The Effects of Renal Disease on Wound Healing

Here’s what you need to know about this relationship.

BY KYLE SCHOLNick,
DPM

Althou gh diabetes is a well-known cause of foot ulcerations—diagnosis, end-stage renal disease (ESRD) and chronic kidney disease (CKD) have proven to be independent risk factors in the development and course of diabetic foot ulcerations. Previous authors have reported foot ulcers to be in 5-10% of people with diabetes, 10% of people with diabetes and early CKD, and 15-40% of people with diabetes and ESRD. Hill, et al. found that ESRD was associated with a fourfold higher risk of diabetic foot complications, defined as infection, ulcer, gangrene, or amputation. Lower extremity amputations

Welcome to Podiatry Management’s CME Instructional program. Our journal has been approved as a sponsor of Continuing Medical Education by the Council on Podiatric Medical Education.

You may enroll: 1) on a per issue basis (at $26.00 per topic) or 2) per year, for the special rate of $210 (you save $50). You may submit the answer sheet, along with the other information requested, via mail, fax, or phone. You can also take this and other exams on the Internet at www.podiatrym.com/cme.

If you correctly answer seventy (70%) of the questions correctly, you will receive a certificate attesting to your earned credits. You will also receive a record of any incorrectly answered questions. If you score less than 70%, you can retake the test at no additional cost. A list of states currently honoring CPME approved credits is listed on pg. 140. Other than those entities currently accepting CPME-approved credit, Podiatry Management cannot guarantee that these CME credits will be acceptable by any state licensing agency, hospital, managed care organization or other entity. PM will, however, use its best efforts to ensure the widest acceptance of this program possible.

This instructional CME program is designed to supplement, NOT replace, existing CME seminars. The goal of this program is to advance the knowledge of practicing podiatrists. We will endeavor to publish high quality manuscripts by noted authors and researchers. If you have any questions or comments about this program, you can write or call us at: Podiatry Management, P.O. Box 490, East Islip, NY 11730, (631) 563-1604 or e-mail us at bblock@podiatrym.com.

Following this article, an answer sheet and full set of instructions are provided (pg. 140).—Editor

Goals and Objectives

After completing this CME, the reader will:

1) Understand the effects of renal disease and dialysis on foot ulcers.

2) Learn how to diagnose uremic neuropathy.

3) Appreciate the challenges both patients and podiatrists have in treating diabetic patients with renal disease.

4) Understand the dermatologic manifestations of renal disease.

The Effects of Renal Disease on Wound Healing

Here’s what you need to know about this relationship.
Renal Disease (from page 133)

among individuals with co-existing diabetes and ESRD are 10 times greater than in the general diabetes population. Post-operative mortality after a lower extremity amputation is 9% in patients with moderate CKD, 15% in patients with severe CKD, and 16% in dialysis patients, compared to

between ESRD and the failure of transmetatarsal amputations to heal. Abnormal levels of zinc have been reported in patients with uremia. Zinc has been well documented to be imperative in wound-healing by serving as a co-factor in a zinc-dependent enzyme system that augments auto-debridement and keratinocyte migration. Zinc also confers protection against reactive oxygen species and bacterial toxins that impede wound-healing.

Iron repletion commonly used in ESRD patients to optimize erythropoiesis may inadvertently impair wound-healing in these individuals. Iron overload not only will compromise the immune system, but also causes the inhibited synthesis and release of vascular endothelial growth factor (VEGF), which helps maintain angiogenesis. Recent evidence suggests that iron depletion with deferoxamine improves tissue oxygenation and facilitates wound-healing by abrogating iron-mediated impairment of VEGF up-regulation. Patients with CKD commonly suffer from anemia from chronic disease. This is primarily due to reduced erythropoetin production by the kidney in addition to a decreased lifespan of red blood cells. The hematocrit in these patients will begin to stabilize in the 20-25% range. Anemia is associated with poor tissue oxygenation and impaired wound-healing. Lastly, CKD patients are frequently volume-overloaded, leading to extensive edema in the lower extremities, which acts as another barrier to wound-healing.

Peripheral Arterial Disease

Peripheral arterial disease (PAD) is very common in patients with kidney disease, especially those on dialysis. Not only is vascular insufficiency three times more prevalent in individuals with CKD than in those without, but the severity of PAD worsens with increased severity of CKD. Therefore, CKD can be used as a predictor of future PAD events. Patients with CKD are highly predisposed to accelerated atherosclerotic plaque formation because of the presence of the traditional risk factors for peripheral vascular disease, but also other CKD-specific risk factors like chronic inflammation, malnutrition, fluid retention, alterations in the renin-angiotensin system, hyperhomocysteinemia, abnormal mineral metabolism, dyslipidemia, lipoprotein imbalances and oxidative stress.

End-stage renal disease (ESRD) and chronic kidney disease (CKD) have proven to be independent risk factors in the development and course of diabetic foot ulcerations.

6% in patients with normal or mildly reduced renal function. A similar study found that the one-year mortality rate after amputation was 49% in patients on hemodialysis, 23% in patients with CKD not on hemodialysis, and 14% in patients without renal disease.

Diabetic nephropathy is the leading cause of ESRD and has been shown to be the primary etiology in 45% of cases. Other causes of renal dysfunction include decreased renal perfusion via hypovolemia, hypotension, decreased ejection fraction, dehydration, vomiting, diarrhea, diuretic use, bleeding, infection, urinary tract obstruction, and nephrotic drugs that lower the glomerular filtration rate (GFR). These include NSAIDs, ACE inhibitors, vancomycin, aminoglycoside antibiotics, and contrast dye.

Poor Wound-Healing

Although there have been limited human studies on the effects of wound-healing in uremic patients, animal models have clearly shown that the addition of urea or uremic serum inhibits fibroblast growth and delays wound-healing. Rats with renal failure have been shown to form less granulation tissue than those with normal kidney function. One study on humans did show a significant correlation
Uremic neuropathy is a well-known complication of ESRD, occurring in 50-60% of long-term hemodialysis patients due to the accumulation of dialyzable neurotoxins.

CKD because as renal function decreases, phosphate clearance is reduced and hyperphosphatemia occurs. Calcium and phosphorus are deposited within the vascular bed, leading to vascular calcification. ESRD is also associated with elevated levels of parathyroid hormone, which has been linked to vascular calcification. Calcium deposition is associated with adverse vascular outcomes due to stiffening of the arteries and has proven to be a major cause of PAD.

In addition to vascular calcification, chronic inflammation demonstrated by elevated C-reactive protein (CRP) significantly increases the risk of atherosclerosis. One study showed that CRP levels were found to be significantly higher in patients who developed symptomatic PAD compared to controls. CRP levels are elevated in approximately one-third of hemodialysis patients. Elevated CRP levels also occur in patients on peritoneal dialysis.

Hemodialysis itself has been shown to cause a drop in microvascular blood flow, diminish pedal skin perfusion, worsen underlying PAD, compromise pedal tissue, impair wound healing, and reduce pedal transcutaneous oxygen tension during and for several hours after dialysis. It is thought that huge fluid shifts and the resultant hemodynamic changes during dialysis are responsible for the dialysis-mediated tissue hypoperfusion. Although hyperbaric oxygen therapy has improved wound healing in diabetics, less of a response has been seen in patients with renal failure. Only 58% of patients with renal failure improved after hyperbaric oxygen treatment, compared with 76% of patients without renal failure.

Uremic Neuropathy
Uremic neuropathy is a well-known complication of ESRD, occurring in 50-60% of long-term hemodialysis patients due to the accumulation of dialyzable neurotoxins. Other factors that contribute to uremic neuropathy include decreased thiamine deficiency, reduced plasma concentrations of biotin and zinc, increased plasma concentrations of phenols, myo-inositol, and hyperparathyroidism. The co-existence of CKD with diabetes means that features of diabetic neuropathy will overlap with uremic polyneuropathy in CKD and ESRD patients.

Uremic polyneuropathy is typically a symmetric, distal, sensory-motor process. Injury is directly related to axon length and evolves in a stocking and glove pattern with longer axons being affected first, resulting in symptoms that are most severe in the lower extremities. Uremic myopathy leads to atrophy of the small intrinsic muscles of the feet, causing claw toes, myoclonus, and eventual paralysis. Complete recovery is nearly impossible once these late-stage motor issues occur. Uremic neuropathy also has been shown to cause a loss of the plantar forefoot fat pad beneath the metatarsal heads, leading to increased pressure and ulceration.

Electrophysiologic studies are the most sensitive way to detect uremic neuropathy, and can also be used to monitor the course of disease once renal replacement therapy is initiated.

www.podiatrym.com FEBRUARY 2016 | PODIATRY MANAGEMENT
Malnutrition

Malnutrition has been reported to be present in 40-70% of patients with ESRD. Measurement of several circulating proteins may be used to assess nutritional status in ESRD, but there are potential limitations due to changes in protein distribution or metabolism in renal failure. The criteria used for the diagnosis of protein-energy wasting are serum albumin less than 3.8g/L, serum pre-albumin less than 30mg/dL, and serum cholesterol less than 100mg/dL.

Hypoalbuminemia is a late manifestation of malnutrition due to the long half-life of albumin. Low serum albumin levels have been associated with poor wound healing and increased foot complications. However, changes in extracellular volume may cause errors in assessing plasma albumin concentration. In addition, some patients on dialysis may have decreased albumin synthesis, despite adequate nutrition or an underlying inflammatory process that is responsible for the decline in albumin production. Pre-albumin, unlike albumin, has a short half-life and changes rapidly in response to alterations in nutritional status. Decreased pre-albumin levels are correlated independently with increased mortality and hospitalization due to infection.

Immunosuppression

Uremia in severe kidney disease alters the inflammatory response to wound-healing and compromises many aspects of the immune system, making these patients more susceptible to infection. Infected foot ulcers in those with renal disease are also more likely to harbor resistant microorganisms. Uremia causes hyporeactive monocytes, depressed bactericidal action of neutrophils, compromised complement activation, diminished T and B lymphocyte function, a reduction in natural killer cell activity, and impaired function of polymorphonuclear cells, the main cells that fight bacterial infections. Elevated levels of iron and calcium, anemia from chronic renal disease and dialysis have all been shown to further exacerbate disorders in polymorphonuclear cell function.

The pathogenesis of the disease is unclear, but the most accepted theories are abnormal bone and mineral metabolism, increased use of calcium-containing oral phosphate binders, vitamin D, and hyperparathyroidism.

Infected foot ulcers in those with renal disease are also more likely to harbor resistant microorganisms.
Renal Disease (from page 136)

tients. This calcification leads to painful skin lesions, necrosis, gangrene and non-healing skin ulcers (Figure 1). Calciphylaxis has been documented to occur in 4% of hemodialysis patients.29

The pathogenesis of the disease is unclear, but the most accepted theories are abnormal bone and mineral metabolism, increased use of calcium-containing oral phosphate binders, vitamin D, and hyperparathyroidism.

Nephrogenic systemic fibrosis is a disorder primarily affecting the lower extremities of ESRD patients, and is characterized by induration and thickening of skin from exposure to gadolinium-based contrast dye. The thickened skin leads to breaks in the epidermis along with pruritus, predisposing patients to ulceration and superimposed infections. Avoidance of gadolinium and its derivatives in patients with advanced renal failure is imperative.

Uremic pruritus and perforating dermatosis are other common skin disorders in CKD. Perforating dermatosis, also known as acquired reactive perforating collagogenesis, is a skin condition associated with CKD, dialysis, and diabetes. The lesions that form are pruritic, keratotic, dome-shaped nodules with central umbilication (Figure 2).

The causes of these lesions are a foreign body reaction to altered dermal collagen or deposition of substances in the skin that aren’t removed by dialysis. Itching in uremic pruritus and perforating dermatosis leads to breaks in the skin, ulcerations, and portals for infection. Treatment for perforating dermatosis involves topical or systemic steroids, retinoids, antihistamines, phototherapy, and allopurinol, which has been shown to cause significant improvement.

Charcot in Renal Disease

ESRD is found in 30% of patients with Charcot neuroarthropathy.30 The high prevalence may reflect the parallel development of the microvascular complications of nephropathy and peripheral neuropathy, or altered mineral metabolism and bone structure in renal disease may provide a metabolic background that is more permissive for the development of a Charcot breakdown. Hyperphosphatemia from reduced filtered phosphate load is related to the development of secondary hyperparathyroidism, which subsequently leads to the development of renal osteodystrophy.

Other renal bone diseases seen in CKD are osteitis fibrosa cystica, adynamic bone disease, and osteomalacia. These bone diseases are related to dysfunctions in bone turnover and put the renal patient at increased risk for bone fractures and Charcot disease. Bone biopsy is the gold standard for diagnosing the various types of bone disease in patients with CKD.

Poor Self-Care

Another important risk factor in ESRD patients is negligence of their own personal foot care. Dialysis patients are overwhelmed with the stringent requirements of dialysis three days per week, and they tend to overlook other aspects of their care, particularly foot care. One study found that dialysis-treated patients were less likely to inspect their feet regularly and to attend podiatry clinics. They were also more likely to engage in foot-damaging behaviors like barefoot walking.31 Poor vision, inadequate flexibility, and reduced dexterity impair a patient’s ability to inspect and perform self-care on the feet. In addition, lying on a dialysis couch for several hours three times a week could contribute to the development of pressure ulcerations on insensitive heels and toes that impinge on the edge of the bed. Up to 30% of all hemodialysis patients are estimated to suffer from depression.32 Depression is another factor that will affect compliance and influence a patient’s ability to keep clinic visits to a podiatrist. Studies have shown an association between depression and poor compliance in ESRD patients on dialysis.33

Because of the increased morbidity and mortality of diabetic patients with renal disease, many studies have shown clear benefits of having a foot care program as part of a dialysis center. One study showed that the incidence of patients requiring amputations declined from 50% to 33% after a chiropodist became available and offered assessments and foot education.34

In the same study, the incidence of amputations declined 10% after the implementation of onsite foot care in the dialysis center.

Many studies have shown clear benefits of having a foot care program as part of a dialysis center.

Continued on page 138
foot disease. Current guidelines on foot care should recognize advanced CKD, ESRD, and dialysis as a separate risk factor for foot disease in order to alert professionals and highlight the opportunity for prevention. To reduce the risk of foot ulcerations and lower extremity amputations, regular foot screening, intensive education in dialysis centers, and treatment should be extended to include patients with ESRD, regardless of the presence of diabetes. PM

References
1) What percent of hemodialysis patients suffer from depression?
A) 10%
B) 20%
C) 30%
D) 40%

2) What bone disease is seen in patients with renal disease?
A) Osteitis fibrosa cystica
B) Osteomalacia
C) Charcot
D) All the above

3) What percentage of Charcot patients have ESRD?
A) 10%
B) 20%
C) 30%
D) 40%

4) Which of the following is NOT a treatment for perforating dermatosis?
A) Phototherapy
B) Steroids
C) Allopurinol
D) Colchicine

5) How does uremia cause immune suppression?
A) Diminishes T and B lymphocyte function
B) Reduction of natural killer cell activity
C) Impairs function of polymorphonuclear cells
D) All of the above

6) What levels of serum pre-albumin are diagnostic of malnutrition?
A) Less than 10 mg/dL
B) Less than 20 mg/dL
C) Less than 30 mg/dL
D) Less than 40 mg/dL

7) What is the LEAST accurate way of assessing PAD in dialysis patients?
A) ABI
B) Doppler waveforms
C) Toe pressures
D) Palpate peripheral pulses

8) What is the main cause of vascular calcification in CKD?
A) Hypophosphatemia
B) Hyperphosphatemia
C) Hypoparathyroidism
D) Hyperglycemia

9) Which of the following are causes of renal dysfunction?
A) Urinary tract obstruction
B) Diarrhea
C) ACE inhibitors
D) All of the above

10) Which nerve is MOST COMMON to test on electrophysiological studies to determine uremic neuropathy?
A) Sural nerve
B) Peroneal nerve
C) Common plantar digital nerve
D) Sciatic nerve

11) What is the most sensitive way to detect uremic neuropathy?
A) Motor nerve conduction

12) Abnormal levels of what are seen in patients with uremia that cause poor wound healing?
A) Magnesium
B) Phosphate
C) Vitamin E
D) Zinc

13) Which dermatologic disorder is caused by exposure to gadolinium-based contrast dye?
A) Calciphylaxis
B) Nephrogenic systemic fibrosis
C) Uremic pruritus
D) Perforating dermatosis

14) Uremic neuropathy is found in what percentage of ESRD patients?
A) < 10%
B) < 30%
C) 50-60%
D) 80-90%

15) At what level does hematocrit typically stabilize in CKD patients?
A) 10-15%
B) 15-20%
C) 20-25%
D) 25-30%

See Answer Sheet on page 141.

Continued on page 140
16) Which of the following causes uremic neuropathy?
 A) Accumulation of dialyzable neurotoxins
 B) Decreased plasma concentration of myo-inositol
 C) Hypoparathyroidism
 D) All of the above

17) What percentage of patients with renal failure improve blood flow via hyperbaric oxygen?
 A) 24%
 B) 39%
 C) 47%
 D) 58%

18) Elevated levels of what causes decreased vascular endothelial growth factor in ESRD patients?
 A) Iron
 B) Zinc
 C) Calcium
 D) Phosphate

19) Approximately 50% of patients have abnormal motor nerve conduction velocity when creatinine clearance falls to what level?
 A) 20 mL/min
 B) 15 mL/min
 C) 10 mL/min (correct)
 D) 5 mL/min

20) In addition to vascular calcification, what else increases the risk of atherosclerosis?
 A) Elevated CRP
 B) Hypohomocysteinemia
 C) Elevated Magnesium
 D) Hyperparathyroidism

PM’s CME Program

Welcome to the innovative Continuing Education Program brought to you by Podiatry Management Magazine. Our journal has been approved as a sponsor of Continuing Medical Education by the Council on Podiatric Medical Education.

Now it’s even easier and more convenient to enroll in PM’s CE program!

You can now enroll at any time during the year and submit eligible exams at any time during your enrollment period.

PM enrollees are entitled to submit ten exams published during their consecutive, twelve–month enrollment period. Your enrollment period begins with the month payment is received. For example, if your payment is received on November 1, 2014, your enrollment is valid through October 31, 2015. If you’re not enrolled, you may also submit any exam(s) published in PM magazine within the past twelve months. CME articles and examination questions from past issues of Podiatry Management can be found on the Internet at http://www.podiatrym.com/cme. Each lesson is approved for 1.5 hours continuing education contact hours. Please read the testing, grading and payment instructions to decide which method of participation is best for you.

Please call (631) 563-1604 if you have any questions. A personal operator will be happy to assist you.

Each of the 10 lessons will count as 1.5 credits; thus a maximum of 15 CME credits may be earned during any 12-month period. You may select any 10 in a 24-month period.

The Podiatry Management Magazine CME program is approved by the Council on Podiatric Education in all states where credits in instructional media are accepted. This article is approved for 1.5 Continuing Education Contact Hours (or 0.15 CEU’s) for each examination successfully completed.

Home Study CME credits now accepted in Pennsylvania

SEE ANSWER SHEET ON PAGE 141.
ENROLLMENT FORM & ANSWER SHEET

Please print clearly...Certificate will be issued from information below.

Name ___
Please Print: FIRST MI LAST
地址___
City__ State_______________________ Zip________________________________
Charge to: _____Visa _____ MasterCard _____ american Express
Card #__Exp. date____________________

Note: Credit card is the only method of payment. Checks are no longer accepted.

Signature__________________________________ Soc. Sec.#______________________ Daytime Phone_____________________________
State License(s)___________________________ Is this a new address? Yes________ no________

Check one:

I am currently enrolled. (If faxing or phoning in your answer form please note that $2.50 will be charged to your credit card.)

I am not enrolled. Enclosed is my credit card information. Please charge my credit card $26.00 for each exam submitted. (plus $2.50 for each exam if submitting by fax or phone).

I am not enrolled and I wish to enroll for 10 courses at $210.00 (thus saving me $50 over the cost of 10 individual exam fees). I understand there will be an additional fee of $2.50 for any exam I wish to submit via fax or phone.

Over, please

Podiatry Management
P.O. Box 490, East Islip, NY 11730

Testing, Grading and Payment Instructions

(1) Each participant achieving a passing grade of 70% or higher on any examination will receive an official computer form stating the number of CE credits earned. This form should be safeguarded and may be used as documentation of credits earned.

(2) Participants receiving a failing grade on any exam will be notified and permitted to take one re-examination at no extra cost.

(3) All answers should be recorded on the answer form below. For each question, decide which choice is the best answer, and circle the letter representing your choice.

(4) Complete all other information on the front and back of this page.

(5) Choose one out of the 3 options for test grading: mail-in, fax, or phone. To select the type of service that best suits your needs, please read the following section, “Test Grading Options”.

Test Grading Options

Mail-In Grading

To receive your CME certificate, complete all information and mail with your credit card information to:

Podiatry Management
P.O. Box 490, East Islip, NY 11730

Facsimile Grading

To receive your CME certificate, complete all information and fax 24 hours a day to 1-631-563-1907. Your CME certificate will be dated and mailed within 48 hours. This service is available for $2.50 per exam if you are currently enrolled in the annual 10-exam CME program (and this exam falls within your enrollment period), and can be charged to your Visa, MasterCard, or American Express.

If you are not enrolled in the annual 10-exam CME program, the fee is $26 per exam.

Phone-In Grading

You may also complete your exam by using the toll-free service. Call 1-800-232-4422 from 10 a.m. to 5 p.m. EST, Monday through Friday. Your CME certificate will be dated the same day you call and mailed within 48 hours. There is a $2.50 charge for this service if you are currently enrolled in the annual 10-exam CME program (and this exam falls within your enrollment period), and this fee can be charged to your Visa, Mastercard, American Express, or Discover. If you are not currently enrolled, the fee is $26 per exam.

In the event you require additional CME information, please contact PMS, inc., at 1-631-563-1604.

Note: If you are mailing your answer sheet, you must complete all info. on the front and back of this page and mail with your credit card information to: Podiatry Management, P.O. Box 490, East Islip, NY 11730.
Medical Education Lesson Evaluation

<table>
<thead>
<tr>
<th>Strongly agree</th>
<th>Agree</th>
<th>Neutral</th>
<th>Disagree</th>
<th>Strongly disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

1) This CME lesson was helpful to my practice _____

2) The educational objectives were accomplished _____

3) I will apply the knowledge I learned from this lesson _____

4) I will make changes in my practice behavior based on this lesson _____

5) This lesson presented quality information with adequate current references _____

6) What overall grade would you assign this lesson?
 A B C D

How long did it take you to complete this lesson?
 _____ hour _____ minutes

What topics would you like to see in future CME lessons?
Please list:

__
__
__
__
__