The Diabetic Foot in Remission

These medical and surgical management strategies can extend ulcer-free days.

BY JOHN D. MILLER, DPM, DAVID C. HATCH JR., DPM, AND DAVID G. ARMSTRONG, DPM, MD, PHD

Goals and Objectives

After completing this CME the reader should be able to:

1) Understand the impact of diabetes-related foot ulcers on the global health system

2) Review current conservative and surgical methods for preventing repeat ulcerative episodes

3) Consider advanced surgical techniques such as silicone implants and fat transplants for maintaining ulcer remission

4) Review the benefits of a multi-disciplinary practice in treating ulcerations and preventing repeat episodes

Incidence and Cost of Diabetic Foot Infections

Developed and developing nations alike loom on the edge of a global diabetes epidemic. Diabetes-related ulcerations continue to challenge healthcare systems by remaining common, costly, and recalcitrant. In the past 30 years, the incidence of diabetes among the world’s adult population has nearly quadrupled, rising to over 422 million adults worldwide. During this same time global prevalence increased from 4.7% to 8.5%. Within the diabetic population the incidence of diabetic foot ulcers (DFUs) has been reported to be 4-10%, with a one-in-four risk of ulceration during an individual’s lifetime.
Remission (from page 115)

Diabetes-related foot ulcers and amputations cost the U.S. healthcare system up to $17 billion annually, surpassing the direct costs of the five most expensive cancers.24 Of the sum of diabetic inpatient care charges, foot ulcers are a significant source of expenditures, often leading to admissions totaling upwards of $100,000 in charges.25,26 It has been reported that as much as 25-50% of all costs related to inpatient care among the diabetic population may be directly related to diabetic foot ulcers.11 These costs inflate with the presence of peripheral arterial disease to nearly four times the cost of purely neuropathic wounds.12

Annual recurrence rates of diabetic ulcerations have been reported as high as 34%, 61%, and 70% at one, three, and five years, respectively, with recurrence rates as high as 20% to 58% within one year.13,14 Existing prevention methods have the potential to decrease the risk of amputation for diabetic patients with a history of ulcer by 50%.15 It has also been demonstrated that a 25% reduction in the incidence of foot ulcers through the implementation of basic preventative clinical care would negate the cost of program implementation of such a program.16 It is to this end that we outline innovations in the management of the diabetic foot ulcer (DFU) and discuss the course of diabetic foot remission.

Current Screening Strategies

The American Diabetes Association recommends that all patients with diabetes see a lower extremity specialist for foot screenings at routine intervals depending on need; at least every six months for the most basic evaluation or at least every two months for those at greater risk for DFUs.27 At these visitations, clinicians evaluate a patient’s continued risk for ulceration by evaluating a patient’s neurological and vascular status as well as reviewing prior history of foot ulcers to create an overall picture of ulcerative risk.18,19

Clinical application of risk stratification guidelines such as the Society for Vascular Surgery’s WIfI (wound, ischemia, and foot infection) classification20 aid this process by correlating certain risk parameters with end-outcome probabilities. This information proves particularly useful during patient education and clarification of how they fit the spectrum of amputation and mortal risk. This information is not only requisite in understanding clinical prognosis, but may be further motivation to take early action towards the promotion of their own health.

Due to the astonishingly high recurrence of DFU, often comparable to rates of cancer, language when discussing preventative treatment of DFUs should be as clear and stark as that of cancers.21 Healed DFUs should be explained to be in “remission”, as

In the past 30 years, the incidence of diabetes among the world’s adult population has nearly quadrupled, rising to over 422 million adults worldwide.
Remission (from page 116)

abatement of recurrence and “active prevention” becomes the focus of care once a DFU has healed.21

With this mindset, increasing patient knowledge regarding the importance of self-care and daily foot exams is key to their overall success in maintaining DFU remission. Current patient guidelines for daily care include inspection of the feet, use of diabetic socks to reduce friction, foot exercises to promote circulation, and application of any topical antifungal or hydrating lotions as necessary. At-risk patients should be informed to avoid self-damaging behaviors such as barefoot walking, using ill-fitting footwear, poor glycemic control, or delaying regular medical professional foot inspection and nail care.14

Reducing Peak Plantar Pressures

Among the strongest risk factors for ulcer development are repetitive stresses on the feet. This, in combination with the presence of neuropathy, bony prominences or peripheral artery disease, augments risk of DFUs as seen in Figure 1. Lack of sensation and decreased metabolic response render patients unable to organically detect repetitive stress and trauma to their plantar tissues. Confounding this presentation, patients with diabetes are shown to regularly have elevated peak plantar pressures which further propagate the risk of ulceration.17,22-25

Plantar pressure redistribution is regarded as the most important therapy for managing a patient in remission.20 The in-shoe peak plantar pressure threshold of 200 kPa has been suggested as a reference to prevent foot ulceration, particularly the rate of re-ulceration. Therefore, it is strongly recommended that any diabetic with confirmed lower extremity polyneuropathy be transitioned to these devices.21,36

Clinical application of risk stratification guidelines such as the Society for Vascular Surgery’s WIfI (wound, ischemia, and foot infection) classification20 correlate certain risk parameters with end-outcome probabilities.

The Use of Custom Footwear for Off-loading

Diabetic shoes have proven effective at reducing ulcer recurrence by reducing peak plantar pressures and shear forces.12,23 Uccioli, et al.24 found ulcer recurrence rates in patients using normal footgear to be more than 200% higher than with patients using diabetic shoes. These findings were later confirmed by Busch and Chantelau,33 who found that therapeutic footwear significantly reduced high peak plantar pressure.24,37 However, that practice does not parallel the podiatric standard of care as only 2-11% of care centers and podiatry practitioners surveyed utilize TCCs for primary off-loading.38-40 Additionally, despite proven efficacy, Cavanagh and Bus41 also found clinicians worldwide resisting the implementation of TCC devices in these cases, presumably because of the increased time, cost, and expertise required for proper application.

The American Diabetes Association recommends that all patients with diabetes see a lower extremity specialist for foot screenings at routine intervals depending on need; at least every six months for the most basic evaluation or at least every two months for those at greater risk for DFUs.

Surgical Methods of Off-loading

Common neurologic and musculoskeletal sequelae of the diabetic process lead to multiple areas of abnormal foot structure that cause areas of higher pressure, which in turn are at great risk for re-ulceration.44-49 The most common deformities in the diabetic patient include local nerve entrapment, tightness of the Achilles tendon, and hammer and claw-toe deformities. With rates of infection status-post digital surgeries in patients with diabetes similar to those of patients without diabetes, surgical options in any patient with obstreperous wound recurrence should be considered.44 Critical to the success of the patient in remission is adequate pre-operative amputation planning. Figures 4a and 4b demonstrate a patient in

Nerve Decompression

A small demographic of diabetic patients who have symptoms of nerve entrapment may benefit from nerve release surgery with a main hypothesis of correction being the...
Achilles Tendon Lengthening

The performance of an Achilles tendon lengthening in tandem with TCC application reduced rates of re-ulceration from 59% to just 15%, when compared to TCC application alone in a study by Mueller, et al. In addition to reduced re-ulceration rates, a mean reduction in peak plantar pressure by 28% with percutaneous Achilles tendon lengthening alone has also been reported.

Surgical Correction of Skeletal Abnormalities

Ulcer recurrence in the diabetic foot is highly linked to progressive deformities of the foot’s natural bony architecture. In areas where bony prominence, such as the dorsal digit with hammertoes (as in Figure 3), or the distal digit in cases of claw toe deformity, increase risk for ulceration, surgical debridement of the offending bone should be considered to facilitate prolonged ulcerative remission. Surgical procedures in these instances are considered prophylactic in the scheme of “Diabetic Foot Surgery Classifications.” These surgeries benefit diabetic patients in a pre-ulcerative state as well as post-ulcerative one by ameliorating areas of peak pressure responsible for ulceration, and may also aid in reducing recurrence.

Plantar Fat Pad Augmentation

Bony prominence in the setting of a diabetic foot and plantar fat pad atrophy, even with efforts of off-loading, often progress to soft tissue breakdown and lesions, or pre-ulceration. Soft tissue that has healed after ulceration can remain with significant deficit and sometimes worryingly thin substance protecting the area. Considering the fundamental principle that plantar pressure is a direct result of plantar soft tissue thickness, recent focus has returned to addressing this in the healed diabetic foot. Prior reports of silicone injection treatment to add bulk to soft tissue associated with ulceration or pre-ulceration have thoroughly indicated its safe utility in prevention and maintenance of wound remission. Additionally, current efforts are being made to optimize the use of one’s own adipocytes to increase soft tissue depth and promote autogenous sourcing of graft material in preventing recurrence of DFUs.

Silicone

Beginning in 1975, Balkin, also the first attributable author for injecting silicone in areas of prominence in the plantar foot, reports injections of over 1,500 patients with painful corns and calluses to evaluate the efficacy and safety of silicone injections. Of those patients, there were also 41 diabetic foot ulcerations and 16 pre-ulcerative lesions. After a series of silicone injections, all 41 ulcerations were re-established, restoring protective sensation following surgical release. Although not indicated in all patients, nerve decompression procedures have demonstrated reduction in ulcer recurrence in patients with diabetic neuropathy and signs of entrapment.

Evidence suggests that use of custom-molded shoes may reduce ulcer recurrence in the patient in remission.
cerations and pre-ulcerative lesions healed. Remarkably, 73% of lesions remained healed during a six-year follow-up period. Long-term in-vivo analysis revealed no significant adverse reactions to the injections. Post-mortem analysis of injection sites were also devoid of adverse inflammation, infection, or granulomatous reactive formations.55,57

Another report, in a randomized double-blind placebo-controlled trial of 28 patients with diabetic neuropathy demonstrated reduced barefoot plantar pressures in pedobarographic evaluations.58 They relate significantly increased plantar tissue thickness, with decreased plantar pressures in the patients who underwent silicone injections versus placebo.59

Injected silicone filler has been found safe, and long-term patient reviews as well as histopathologic evaluation of injection sites have demonstrated no serious complications. Despite these findings, there are current limitations to the utility and availability of “injectable-grade” silicone products, mainly attributed to prior adverse reactions, a result of impure and large quantity injections. Further investigations into non-silicone injectable materials such as poly-L-lactic acid (Sculptra™, Sanofi-Aventis) and hyaluronic acid may prove remarkable in the treatment and prevention of recurrence of DFUs.

Autologous Fat Grafting

A report by Chairman in 1994 was the first to outline the grafting of autologous fat to the plantar foot during concomitant bone procedures.60 This report of 50 patients demonstrated good “subjective” results; however, the exact process of graft harvesting and application were not well outlined. Subsequent anecdotal findings questioned the ability of plantar fat grafts to provide lasting therapeutic relief to areas of prominence.61 Further reports of post-traumatic regional fat augmentation, or “lipofilling” by Nicoletti, et al.62 demonstrated the ability to provide improved plantar load distribution and local soft tissue stability utilizing autologous fat grafts.

Concerning the application of autologous fat grafting for the treatment of DFUs, Statsch, et al.63 performed autologous lipotransfer to increase soft tissue thickness and incite wound healing after debridement of 26 chronic non-healing wounds. They report an 88% healing rate, with a reduction of all wound sizes by 50% at an average of four weeks. This report demonstrated efficacy in the healing of chronic DFUs with the use of autologous fat transfer.

A single case report publication efficacy of autograft application in the promotion of wound remission may reveal further insight as to its safety, simplicity, and efficacy.

Patients with diabetes mellitus and vascular disease have approximately a ten times increased likelihood of ulcer recurrence.

In Dr. Balkin’s study following the outcomes of patients receiving silicone injections to prominent areas of the plantar foot, 73 percent of ulcerative lesions remained healed at 6 years.

There is currently a single randomized control trial launched in the U.S. with the goal of evaluating the efficacy of lipo-filling/fat grafting for plantar heel pain.61,62 Further investigation into the
Remission (from page 119)

ulcerative “remission” by allowing real-time analysis of the efficacy of therapy efforts towards critical provider and patient goals for care.72

The Role of the Multidisciplinary Team

Between 10% to 40% of patients with diabetes also have a form of vascular disease, a comorbid factor that increases the likelihood of ulcerative recurrence by a factor of 10.33 Furthermore, patients with vascular disease compounded by peripheral neuropathy also have higher re-ulceration and amputation rates than those with neuropathy alone.66

As the predominance of neuropathic ulcers continues to shift toward the neuroischemic, the increasing adoption of the “toe and flow” multidisciplinary model, where podiatry and vascular surgeons personally the backbone of a diabetes wound management team, will see accelerated implementation.67

A coordinated team approach has been shown to decrease the frequency of limb loss and perpetuation of diabetic foot remission worldwide.68-70 A prospective study from 2008 found a 70% reduction in the total number of diabetes-related amputations from 1995 to 2005 in the United Kingdom because of the introduction of the multidisciplinary team.71 Reports from Lithuania found that patients receiving multidisciplinary care had a re-ulceration occurrence rate of 30.4% in comparison with a control group receiving individualized care had a re-ulceration occurrence rate of 30.4% in comparison with a control group receiving individualized care.72

Furthermore, recent data suggest that the removal of foot care from statewide reimbursement systems led to significant and sustained increases in hospital admission (37%), charges (38%), length of stay (23%), and severe aggregate outcomes including amputation, sepsis, and death (49%).73 The inclusion of occupational therapists, physical therapists, and registered nutritionists further facilitates the respective home environment augmentation, mobility, dietary, and health style modifications necessary to reach the personalized goals of the high-risk diabetic patient.74-76

Pearls and Lasting Comments on Ulcerative Remission

Maintaining a state of remission in a high-risk diabetic foot is one of the most complex aspects related to the management of diabetic foot complications. Initial occurrence and subsequent recurrence of DFUs are multifactorial in terms of etiologies and confounding factors; included in the list are biomechanics as well as sociomechanics.21,77

It must always be considered that any lasting medical treatment or healing course is doomed without patient and support team involvement. Recruiting the emotional and intellectual engagement of patients and other members of the patients’ support team is challenging, yet patients are more adherent to treatment guidelines and follow-up visits when clearly presented with the reasoning and logic behind the physician’s treatment course.78 It has also been proven that when others participate in a patient’s care, it not only has a positive psychological impact on the patient, but also on other individuals involved.79

Much of the aims in the future of personalized medicine rest firmly on catered medical and surgical treatments.80 We believe that an analogy to cancer is apt in terms of personal and fiscal impact; therefore, patient involvement should be central to prevention.81 Just as a regular breast cancer screening examination may be important in identifying benign or sinister lesions, so too could regular foot examinations in detecting equally co-morbid pre-ulcerative calluses.

Many of the interventions mentioned in this article hold great promise for improving patient care and extending the duration of wound remission. Physician practices and care strategies still demonstrate the best results when centered on interpersonal connections and interdisciplinary approaches. In the realm of main-

References

Continued on page 121

A. Piaggi, E. Schipani, F. Campi, M. Romanelli, F. Baccetti, C. Arvia, R. Navalesi, Conservative surgical approach ver-

Remission (from page 122)

CME EXAMINATION

SEE ANSWER SHEET ON PAGE 125.

1) What is the current estimated population of adults diagnosed with diabetes mellitus in the world?
 A) ~5 million persons
 B) ~30 million persons
 C) ~100 million persons
 D) ~400 million persons

2) How often does the American Diabetes Association recommend a patient with diabetes see a lower extremity specialist for routine screening?
 A) Only as needed
 B) At least every 6 months
 C) At least every 5 years
 D) At least every 10 years

3) The WiFi wound classification system quantifies which of the following parameters?
 A) Vascular status
 B) Presence or absence of infection
 C) Wound size/depth
 D) All of the above

4) Which of the following regarding the use of custom-molded shoes in the diabetic patient is true?
 A) Evidence suggests they should be a first-line treatment for active diabetic wounds.
 B) Evidence suggests their use may reduce ulcer recurrence in the patient in ‘remission’.
 C) Evidence suggests that custom-molded shoes should not be used in patients with a prior history of foot ulceration.
 D) Presence of neuropathy, ischemia, and/or deformity would not indicate use of custom-molded shoes in a patient with diabetes.

5) In Dr. Balkin’s study following the outcomes of patients receiving silicone injections to prominent areas of the plantar foot, what percentage of ulcerative lesions remained healed at 6-years?
 A) 20%
 B) 45%
 C) 60%
 D) 73%

continued on page 124
6) Benefits of using lipofilling/fat grafting for coverage of high plantar pressure areas in the foot include:
 A) Use of an autologous substance
 B) Increasing the thickness of soft tissue covering prominent bone
 C) Improving plantar pressure load distribution
 D) All of the above

7) A recent decision to remove the coverage of foot care in state-wide reimbursement systems lead to increases in which of the following?
 A) Foot related hospital admissions (37%)
 B) Foot related medical charges (38%)
 C) Length of stay for foot related admissions (23%)
 D) All of the above

8) Patients with diabetes mellitus and vascular disease have an increased likelihood of ulcer recurrence by approximately what factor?
 A) Decreased likelihood for recurrence
 B) No increase in likelihood
 C) Ten times the likelihood
 D) Fifty times the likelihood

9) ‘Intelligent’ insoles or ‘smart’ socks may offer future benefit in the prevention of re-ulceration by:
 A) Constant monitoring of warmth, pressure or other parameters critical to early detection of potential ulcerations
 B) Actively preventing the formation of new wounds through electrical stimulation
 C) Decreasing plantar pressures by modulating material densities
 D) Changing the temperature and humidity within shoes to maintain a protective environment

10) Plantar re-ulceration rates may be best reduced with the addition of ______ following the use of serial total contact casting to achieve complete wound healing.
 A) Increasing weight-bearing exercises
 B) Achilles tendon lengthening
 C) Early return to weight-bearing activities
 D) Use of assistive walking devices such as crutches or a cane
Enrollment/Testing Information and Answer Sheet

Note: If you are mailing your answer sheet, you must complete all info. on the front and back of this page and mail with your credit card information to: Podiatry Management, P.O. Box 490, East Islip, NY 11730.

TESTING, GRADING AND PAYMENT INSTRUCTIONS

1. Each participant achieving a passing grade of 70% or higher on any examination will receive an official computer form stating the number of CE credits earned. This form should be safeguarded and may be used as documentation of credits earned.

2. Participants receiving a failing grade on any exam will be notified and permitted to take one re-examination at no extra cost.

3. All answers should be recorded on the answer form below. For each question, decide which choice is the best answer, and circle the letter representing your choice.

4. Complete all other information on the front and back of this page.

5. Choose one out of the 3 options for test grading: mail-in, fax, or phone. To select the type of service that best suits your needs, please read the following section, “Test Grading Options”.

TEST GRADING OPTIONS

Mail-In Grading
To receive your CME certificate, complete all information and mail with your credit card information to:

Podiatry Management
P.O. Box 490, East Islip, NY 11730

PLEASE DO NOT SEND WITH SIGNATURE REQUIRED, AS THESE WILL NOT BE ACCEPTED.

There is no charge for the mail-in service if you have already enrolled in the annual exam CME program, and we receive this exam during your current enrollment period. If you are not enrolled, please send $26.00 per exam, or $210 to cover all 10 exams (thus saving $50 over the cost of 10 individual exam fees).

Facsimile Grading
To receive your CME certificate, complete all information and fax 24 hours a day to 1-631-563-1907. Your CME certificate will be dated and mailed within 48 hours. This service is available for $2.50 per exam if you are currently enrolled in the annual 10-exam CME program (and this exam falls within your enrollment period), and can be charged to your Visa, MasterCard, or American Express.

If you are not enrolled in the annual 10-exam CME program, the fee is $26 per exam.

Phone-In Grading
You may also complete your exam by using the toll-free service. Call 1-800-232-4422 from 10 a.m. to 5 p.m. EST, Monday through Friday. Your CME certificate will be dated the same day you call and mailed within 48 hours. There is a $2.50 charge for this service if you are currently enrolled in the annual 10-exam CME program (and this exam falls within your enrollment period), and this fee can be charged to your Visa, Mastercard, American Express, or Discover. If you are not currently enrolled, the fee is $26 per exam.

In the event you require additional CME information, please contact PMS, Inc., at 1-631-563-1604.

ENROLLMENT FORM & ANSWER SHEET

Please print clearly...Certificate will be issued from information below.

Name __ Soc. Sec. #______________________________

Please Print: FIRST MI LAST

Address___

City__ State_______________________ Zip________________________________

Charge to: _____Visa _____ MasterCard _____ American Express

Card #__Exp. Date____________________

Note: Credit card is the only method of payment. Checks are no longer accepted.

Signature__________________________________ Soc. Sec.#______________________ Daytime Phone_____________________________

State License(s)___________________________ Is this a new address? Yes________ No________

Check one: ____ I am currently enrolled. (If faxing or phoning in your answer form please note that $2.50 will be charged to your credit card.)

______ I am not enrolled. Enclosed is my credit card information. Please charge my credit card $26.00 for each exam submitted. (plus $2.50 for each exam if submitting by fax or phone).

______ I am not enrolled and I wish to enroll for 10 courses at $210.00 (thus saving me $50 over the cost of 10 individual exam fees). I understand there will be an additional fee of $2.50 for any exam I wish to submit via fax or phone.

Over, please
EXAM #6/16
The Diabetic Foot in Remission
(Miller, Hatch and Armstrong)

Circle:

1. A B C D
2. A B C D
3. A B C D
4. A B C D
5. A B C D
6. A B C D
7. A B C D
8. A B C D
9. A B C D
10. A B C D

Medical Education Lesson Evaluation

<table>
<thead>
<tr>
<th>Strongly agree</th>
<th>Agree</th>
<th>Neutral</th>
<th>Disagree</th>
<th>Strongly disagree</th>
</tr>
</thead>
</table>

1) This CME lesson was helpful to my practice ______
2) The educational objectives were accomplished ______
3) I will apply the knowledge I learned from this lesson ______
4) I will make changes in my practice behavior based on this lesson ______
5) This lesson presented quality information with adequate current references ______
6) What overall grade would you assign this lesson?
 A B C D

How long did it take you to complete this lesson?
 ______ hour ______ minutes

What topics would you like to see in future CME lessons? Please list:

__
__
__
__
__
__
__