Equinus has been described as “the most profound causal agent in foot pathomechanics and is frequently linked to common foot pathology,” and also has been described as “the greatest symptom producer of the human foot;” yet it is commonly overlooked and under-treated. The importance of equinus cannot be overstated, and its management is crucial to treating of the underlying pathology of all the following foot and ankle conditions as

Continued on page 158
documented in the literature: Heel spur syndrome/plantar fasciitis, Achilles tendinopathy, posterior tibial tendon dysfunction, diabetic foot ulcers, Charcot neuropathy, metatarsalgia, Morton’s neuroma, lesser MPJ pathologies—PDS, capsulitis, hallux valgus, hammer digit syndrome, ankle fracture/sprains, Sever’s disease, pediatric flatfoot deformity, osteoarthritis forefoot/midfoot, 1st ray hypermobility, pes plano valgus, hallux limitus, sesamoiditis, lateral column syndrome, Freiberg’s infarction, and forefoot callus. So, if equinus is so prevalent, how come there is often a failure in recognition, association to pathology, and treatment of this condition?

There are several factors at play that all lead to this underappreciation and lack of treatment with equinus. It all starts with the definition of equinus, as there is no standard definition. The next crucial factor is the lack of appreciation of the relationship between equinus and the above-listed pathologies. Finally, the lack of treatment is related directly to ineffectual conservative management of the condition. Let’s take a journey through equinus to fully understand the condition, and hopefully bring to it the respect it is due.

Anatomy
Most pathologies of the foot and ankle start with anatomy. The anatomy of the triceps surae consists of the gastrocnemius, soleus, and plantaris muscles. The gastrocnemius muscle originates on the posterior aspect of the femoral condyles and posterior knee capsule with the medial head being the larger of the two, and descending further distally. The gastrocnemius primary act to supply power for propulsion, knee flexion, and plantarfexion of the ankle joint (Figure 1).

The gastrocnemius muscle crosses the knee, ankle, and subtalar joints. The soleus originates on the posterior aspect of the head of the fibular, the middle one-third of the medial border of the tibia, the soleal line, and the interosseous membrane. The aponeurosis of the soleus is posterior to the muscle. The soleus only crosses the ankle and subtalar joints. The soleus is innervated by the tibial nerve and its arterial supply is that of the tibial, peroneal, and sural arteries. The primary function of the sural artery is to stabilize the leg onto the foot and plantarflex the ankle joint.

The plantaris tendon originates medial and superior to the lateral head of the gastrocnemius muscle at the lateral head of the femoral condyle, coursing lateral to the gastrosoleal complex and medial to it. The plantaris tendon can be absent 7% of the time.

The Achilles tendon is the continuation of the aponeurosis of the gastrocnemius and soleus merging together. forming the largest, thickest, strongest tendon in the body, approximately 15 centimeters long. The tendon inserts into the middle one-third of the posterior aspect of the calcaneus with the plantaris tendon inserting medial to the Achilles tendon. There is a retrocalcaneal bursa between the Achilles tendon and the calcaneus. The fibers of the Achilles tendon rotate laterally approximately 90° so that the gastrocnemius fibers insert primarily laterally and the soleus fibers insert primarily medially. The tendon is surrounded by a tendon sheath which allows gliding of the tendon, and below this sheath is the paratenon, which protects and nourishes the tendon. The vascular

There is a well-documented zone of hypovascularity 4-5 cm proximal to the insertion of the Achilles tendon.
supply of the Achilles tendon is from the myoten-
donous junction,
the paratenon, and the calcaneal pe-
riosteum. There is a
well-documented
zone of hypovascu-
larity 4-5 cm prox-
imal to the insertion
of the tendon.

Definition

After understanding the anato-
my, the definition becomes the next
most crucial factor
and is surprisingly
difficult, especially
among different
specialties. The def-
nition of equinus
ranges from -10° to
+ 22° in the litera-
ture, with + 10° as
a consensus of thir-
ten different stud-
ies. Sgarlato36 in The
Journal of Ameri-
can Podiatric Med-
ical Association
in 1975 first described the definition as +10°
with the subtalar joint in neutral posi-
tion and the midtarsal joint locked.

Pseudoequinus

There are two primary types of
equinus—muscular and osseous, with
subgroups of each kind. In the mus-
cular group there can be either spastic
or non-spastic equinus. Either of
these subgroups of spastic or non-
spastic equinus can further be broken
down into gastrocnemius or gastro-
soleus equinus. The osseous forms of
equinus include: anterior tibiotalar
exostosis (best seen on a lateral
charger view on X-ray), distal tibial-
fibular osseous bridging from prior
trauma, pseudoequinus and com-
bined equinus. Pseudoequinus occurs
in the cavus foot structure where
ankle joint dorsiflexion occurs to dor-
siflex the forefoot, which is plantar-
flexed to the rearfoot. The ankle
dorsiflexion used to do this then lim-
its the amount available for normal
ambulation, therefore the term pseu-
doequinus. The combined equinus is
just a combination of one type of
muscular and osseous equinus.

Clinical Evaluation

Evaluation of equinus clinically is
one of the primary stumbling blocks
between professions that inhibit effec-
tive communication. The Silfverskold
test is what is used to determine the
type of equinus. In this examination,
the subtalar is placed in neutral posi-
tion and the midtarsal joint is locked
by supination of the forefoot. The
ankle is dorsiflexed maximally
with the knee in full extension
and then checked with the knee in flexion
(Figures 2 and 3). If the ankle joint
dorsiflexes greater than 90° with both
the knee extended and flexed, there is
no equinus. If the ankle joint dorsi-
flexes greater than 90° with the knee
flexed by less than 90° with the knee
extended, the result is gastrocnemius
equinus. If the ankle dorsiflexion is
less than 90° with both the knee
flexed and extended, then it can ei-
ther be gastroc-soleus equinus or os-
seous equinus. This is determined by
the quality of the end range-of-motion
and with a charger dorsiflexion stress
lateral ankle x-ray. A soft end range-
of-motion is more likely a gastroc-
soleus equinus, especially if no an-
terior or ankle impingement is noted on
the x-ray.

Biomechanics of Equinus

Understanding the biomechanics
of equinus is crucial to getting an ap-
preciation of the devastation it has on
the foot pathomechanics. The center
of pressure is about 6 cm anterior to
the ankle, roughly over the dorsal 2nd
metatarsal-cuneiform joint. This
would make us fall forward in normal
standing, but that reaction is is negat-
ed by the pull of the plantarflexors.
The triceps surae has been document-
ed to be the primary plantarflexor
of the ankle joint and therefore offsets
the anteriorly displaced center of
pressure. It has further been demon-
strated with equinus that the center of
pressure moves about 3 cm distally
and 3 mm laterally (Figures 4 and 5).

If the ankle joint dorsiflexes
greater than 90° with the knee flexed by less than 90°
with the knee extended, the result is gastrocnemius equinus.

Continued on page 160
medially to the subtalar axis and its distance from the axis is about the same as the laterally placed center of pressure to the subtalar axis in a foot with a normal subtalar axis and no equinus. The medial position of the Achilles creates a supinatory moment, while the lateral center of pressure due to ground reactive forces (GFR) creates a pronatory moment. These two cancel each other out, providing a rectus foot structure.

When equinus is present, the distal and lateral positioning of the center of pressure in relation to the subtalar axis creates an increased pronatory effect on the foot due to GFR, which is not offset by the supinatory effect of the Achilles tendon. When the subtalar joint axis is more medially deviated, such as in a pronated foot, this further distances the center of pressure from the subtalar axis, causing even more pronatory deformity due to GFR. The opposite occurs in the supinated foot, where the subtalar joint axis is more laterally deviated to the point where even the center of pressure is on the subtalar axis, medial to the subtalar axis or just lateral to the subtalar axis. This puts both the Achilles and center of pressure in supinatory moments (or at least a lesser pronatory moment than the supinatory moment of the Achilles tendon) due to GFR—therefore making a cavus foot worse over a period of time due to increased rearfoot varus, peroneal pathology, and subtalar instability.

Johnson and Christensen examined the effects of equinus on first ray pathomechanics using cadaver weight-bearing models in their landmark series on first ray pathomechanics. Sensors were applied to each of the individual bones making up the medial column of the foot. Loading of the Achilles tendon was applied and then three-dimensional data were recorded for each segment of the medial column. The results showed plantarflexion of the talus and navicular, and dorsiflexion of the medial cuneiform and 1st metatarsal occurring through the navicular-cuneiform joint. This occurs due to dampening of the effect of the peroneus longus tendon eversion of the medial cuneiform that leads to locking of the midtarsal joint. This lack of midtarsal joint locking leads to the above described medial column instability. This study showed that the effect of equinus is not a stretching of the plantar ligaments over a period of time that leads to first ray instability but, in fact, is a dampening of the peroneus longus function that leads to first ray hypermobility.

An important question that is often overlooked in the biomechanical discussion of equinus is the effect of pronation on the GSC. Kevin Kirby, DPM says via personal communication, “accommodative shortening of the GSC will occur with prolonged medial deviation of the STJ axis and flattening of the medial arch of the foot.”

Sgarlato described three types of compensation for equinus. The uncompensated equinus deformity manifests itself as a toe walker due to lack of ankle joint dorsiflexion and/or MTJ pronation to get the heel down to the ground. This accounts for about only 1% of equinus cases. In the partially compensated equinus deformity, the heel is on the ground but the tibia does not achieve 10 degrees of flexion to the ground. This results in an early heel-off gait pattern. When the equinus deformity is fully compensated, the result is the severely pronated, hypermobile foot with heel contact to ground and the tibia achieving more than 10 degrees of flexion to the ground. Heel-off in the fully compensated equinus deformity is normal.

The proximal pathologies associated with equinus are numerous and easily overlooked due to the profound distal pathologies that often overshadow these proximal deformities. Lumbar lordosis, hip flexion, knee flexion, genu recurvatum, and hamstring contractures have all been attributed to equinus. The more obvious distal pathologies that directly result from

Figures 4 & 5: The center of pressure is located as shown on the left drawing approximately 6 cm distal to the ankle joint. With equinus deformity the center of pressure moves distal and lateral further away from the subtalar joint axis as shown on the right drawing.

Continued on page 161
DiGiovanni4 in the Journal of Bone and Joint Surgery (2002) examined ankle joint dorsiflexion in symptomatic patients and a control group, and the reliability of goniometer testing. The ankle joint dorsiflexion with the knee extended averaged 4.5 degrees in the symptomatic group and 13.1 degrees in the control group. The percentage of symptomatic patients with less than 5 degrees dorsiflexion was 65\% and the control group was 24\%, while the amount with less than 10 degrees dorsiflexion was 88\% and 44\%, respectively. The correct diagnosis via a goniometer, confirmed with an equinometer for the less than 5 degree group, was 76\% for the symptomatic group and 94\% for the control group, while the 10 degree group diagnosis was correct 88\% and 79\%, respectively.

This study has helped to clarify the definition of equinus, which has a wide range of definitions in the literature, with the most common definition being 10 degrees of dorsiflexion with the knee extended and the subtalar joint in neutral position and the midtarsal joint locked. This was originally described by Sgarlato36 in JAPMA 1975. According to DiGiovanni’s4 findings, with ankle joint dorsiflexion of less than 5 degrees, the correct diagnosis was made 76\% of the time in the symptomatic group, and the incorrect diagnosis was avoided in 94\% of the time in the control group. I believe the standard definition for equinus should therefore be 5 degrees of ankle joint dorsiflexion with the knee extended based on the findings of this study. Arriving at a standard definition is crucial for equinus and is the first step to standardized treatment protocols.

Aronow’s1 study was one of the first to not only explore the changes on forefoot and rearfoot pressures associated with equinus, but also to examine the midfoot changes as well. A load was applied to the GSC and then to just the gastrocnemius muscle, and then the changes in pressures were measured. In the GSC group, the rearfoot pressures decreased (18\%) and the midfoot (38\%) and forefoot (59\%) increased. In the gastrocnemius group, the rearfoot pressures decreased (16\%) and the midfoot (32\%) and forefoot (50\%) increased. These numbers were very consistent with other studies on the effect of equinus and forefoot pressure changes, such as Jones14 in The American Journal of Anatomy in 1941 and Ward43 in The Journal of the American Podiatric Medical Association in 1998. When the loads were removed, the pressures on the forefoot decreased 32\% and the rearfoot pressures increased 32\%. These additional findings were similar to those of Mueller22 in The Journal Bone and Joint Surgery 2003, who measured the effect of a tendo-Achilles lengthening on pressure changes in the foot. In Mueller’s study, the forefoot pressures decreased 31\% and the rearfoot pressures increased by 34\%.

Patel and DiGiovanni25 found that 83\% of plantar fasciitis cases were associated with equinus.

Figure 6: In this side view of the EQ/IQ brace, you can see the hinge to be placed at the knee joint. When the brace crosses the knee joint, it allows for stretching of the entire GSC. The hinge allows for the brace to engage just the soleus if taken down or the entire GSC if left intact.

or have a relationship to equinus will be discussed with some of the well-documented literature.

In Hill’s15 article, the incidence of equinus with pathological conditions was studied by examining 209 new patient visits over a six week period of time. Twenty-nine patients were excluded from the study because they did not meet study criteria. Of the remaining 174 patients, six had normal ankle joint dorsiflexion, leaving 168 of the patients exhibiting equinus. Three of the patients had gastrocnemius equinus and 165 had GSC equinus. Their definition for equinus was less than 3 degrees dorsiflexion with knee extension. Their findings were that 96.5\% of the patients with foot and ankle pathology exhibited equinus.

In Mueller’s study, the forefoot pressures decreased 31\% and the rearfoot pressures increased by 34\%.

Continued on page 162
as body weight. This reaffirmed the close relationship between plantar fasciitis and equinus. Any treatment plan for plantar fasciitis must include equinus management. Treatment of equinus can be broken down into either conservative care or surgical care. As with most pathologies, conservative care should be attempted initially. The two main forms of conservative care are manual stretching and bracing.

Radford, et al. in a meta-analysis showed that calf muscle stretching provided a small but statistically significant increase in ankle joint dorsiflexion. Their analysis showed that 15 to 30 minutes per day provided the greatest amount of ankle joint dorsiflexion (3.03 degrees) for each of the three groups. Grady and Saxena in their study had patients stretch once per day over a six-month period of time for 30 seconds, 2 minutes, or 5 minutes with the knee extended. The increase in ankle joint dorsiflexion for each group was 2.15, 2.3, and 2.7 degrees, respectively. These totals were not statistically significant, but when one takes into account the minimal amount of stretching done daily, the results are actually encouraging.

Hill discussed the problems with manual stretching stating, “Active stretching requires detail in teaching the proper technique, and must be done at least four times a day at five-minute to eight-minute sessions. The most serious mistakes patients make during their previous attempts at stretching are inadequate stretch time and abducted foot position during the stretch. It is critical that the foot be adducted 10 degrees during the stretching to lock the subtalar-midtarsal joints for maximum benefit at the calf.” Night splints have long been the only mode of bracing for equinus treatment, but there are several flaws with them. First, they are designed to be used at night while sleeping and the most common sleeping position with these braces is on the side with knees bent. This means that the gastrocnemius muscle is not being stretched. Remembering that the gastrocnemius muscle crosses both the knee and ankle, it is most often the contracted structure. This accounts for the ineffective nature of night splints. Based on our personal experience, compliance with night splints is also very poor. These two factors led to the mediocre results attributed to night splints as described in the Evans’ study, which showed only 6 of 20 patients achieving 10 degrees of dorsiflexion with the use of night splints.

EQ/IQ Brace

The answer we have developed to address ineffectual manual stretching and the failures of night splints is the EQ/IQ brace. This brace does not need to be slept in. We recommend the hinge can be released to allow for ease of application and isolated stretching of the soleus. There is also a hinge at the ankle joint which allows the treating physician to set exactly the amount of dorsiflexion desired based on the patient’s biomechanical exam (we see maybe 5 degrees the first month, going up to 10 degrees the second month, and if needed 15 degrees the third month).

The hinge goes from -30 degrees to + 30 degrees, in 5 degree increments (Figure 7). As podiatrists, we measure everything from x-ray angles to forefoot varus position. Yet we slap on a night splint and tell our patients to pull as tight as they can. This makes no sense to us; we should have more control and precision over the treatment of this condition. We have made this brace ambulatory with a negative heel rocker sole, which allows ambulation with a fixed dorsiflexed position. The rocker soles are removable and come in different soles to match the amount of ankle joint dorsiflexion (i.e., 5, 10, and 15 degrees). There is an adjustable wedge that goes under the hallux to engage the windlass mechanism, which supinates the rearfoot and also puts additional stretch on the plantar fascia. The supination of the rearfoot is important as it puts the foot in the most desirable position for stretching of the GSC. These wedges come in various degrees (i.e., 35, 50, and 65 degrees) and Velcro to the foot bed (Figure 8). We made varying degrees of wedges to allow for those with halluc limitus or rigidus. The femoral and tibial uprights are adjustable for leg and thigh length and should be set by the physician. Finally, the standard foot beds will fit a small/medium size, but it can be replaced to an extended version that will fit a large extra-large size.

A study by Evans showed only 6 of 20 patients achieving 10 degrees of dorsiflexion with the use of night splints.

Continued on page 163
The time period we recommend is based on recommendations for manual stretching from the meta-analysis by Radford, but doubled. Most manual stretching is recommended to be done about 30 minutes per day. An hour a day is reasonable from a compliance standpoint, compared to 6 to 8 hours at night while disturbing the patient’s sleep. The ambulatory component of the brace is important also. We foresee patients getting dressed in the morning while then putting on the brace and then stretching while performing their morning rituals. A similar scenario would play itself out for the evening stretching. Additionally, the ambulatory nature of the brace provides an active stretching component as well as a static stretching component. A final consideration is that this is not a brace that patients will be able to buy at a drug store or on the Internet. We have had patients complain about the expense of a night splint when they can find the same thing for about 20% of what is charged for the brace. This is a technical device that must be set, monitored, and adjusted by a physician. This brace will have a significant positive impact on a practice management component of your practice. Most importantly, it will provide you a better way to treat the most significant producer of foot and ankle pathologies—equinus deformity.

Surgical Approaches to Equinus

The surgical approach to equinus is well documented in the literature and focuses mainly on two different procedures, the tendo-Achilles lengthening (TAL) or gastrocnemius recession.

The surgical approach to equinus is well documented in the literature and focuses mainly on two different procedures, the tendo-Achilles lengthening (TAL) or gastrocnemius recession. This procedure employs three stab incisions starting one centimeter proximal to the insertion of the GSC, with two medial incisions and one lateral incision between the two medial incisions. The tendon is sectioned through the central portion and incised in the respective direction of the stab incisions. The tendon then slides to a lengthened position. This procedure is not without potential complications, such as under-lengthening, or much worse, over-lengthening.

The gastrocnemius recession is one of our favorite procedures and is well documented in the literature. We prefer the Bauman intramuscular approach to lengthening of the gastro-
Medical Education
Continuing Education

Chimera, NJ; Castro, M; Manal, K. Function and strength following gastrocnemius recession for isolated gastrocnemius contracture. Foot Ankle Int. 31:377-384, 2010.

Flanigan, RM; Nawoczenski, DA; Chen, L; Wu, H; DiGiovanni, BF. The influence of foot position on stretching of the plantar fascia. Foot Ankle Int. 28:815-822, 2007.

Grant, WP; Sullivan, R; Sonenshine, DE; Adam, M; Slusser, JH; Carson, KA; Vinik, AI. Electronic microscopic investigation of the effects of diabetes mellitus on the Achilles tendon. J Foot Ankle Surg. 36:272-278, 1997.

Herzenberg, JE; Lamm, BM; Corwin, C; Sekel, J. Isolated recession of the gastrocnemius muscle: the Baumann procedure. Foot Ankle Int. 28:1154-1159, 2007.

Maskill, JD; Bohay, DR; Anderson, JG. Gastrocnemius recession to treat isolated foot pain. Foot Ankle Int. 31:19-23, 2010.

Nemec, SA; Habbu, RA; Anderson, JG; Bohay, DR. Outcomes following mid-foot arthrodesis for primary arthritis. Foot Ankle Int. 32:355-361, 2011.

Patel, A; DiGiovanni, B. Association between plantar fascitis and isolated contracture of the gastrocnemius. Foot Ankle Int. 32:5-8, 2011.

Porter, D; Barrill, E; O’neacre, K; May, BD. The effects of duration and frequency of Achilles tendon stretching on dorsiflexion and outcome in painful heel syndrome: A randomized, blinded, control study. Foot Ankle Int. 23:619-624, 2002.

Sgarlato, TE; Morgan, J; Shane, HS; Frenkenberg, A. Tendo Achilles lengthening and its effect on foot disorders. J Am Podiatry Assoc. 65:849-871, 1975.

Dr. DeHeer is in private practice in Central Indiana. He is the team podiatrist for the Indiana Pacers and the Indiana Fever and is on the editorial Board of Podiatry Today. He is the invenor of the EQ/IQ brace, President and Founder of Wound Care Haiti, and a medical missionary. Dr. DeHeer is President of the Indiana Podiatric Medical Association and continuing education chairperson. He is recipient of the 2011 APMA Humanitarian of the Year Award.

www.podiatrym.com
1) The triceps surae consist of the following muscles:
 A) Gastrocnemius
 B) Soleus
 C) Plantaris
 D) All of the above

2) The gastrocnemius crosses which of the following joints?
 A) Knee
 B) Ankle
 C) Subtalar
 D) All of the above

3) Which of the following is NOT an action of the gastrocnemius?
 A) Dorsiflex the ankle joint
 B) Supply power for propulsion
 C) Flex the knee
 D) Plantarflex the ankle joint

4) Which of the following joints does the soleus cross?
 A) Ankle
 B) Knee
 C) Subtalar
 D) A & C

5) The zone of hypovascularity of the Achilles tendon is located:
 A) 4-5 cm proximal to the insertion of the tendon
 B) 7 cm proximal to the insertion of the tendon
 C) 1 cm proximal to the insertion of the tendon
 D) At the insertion of the tendon

6) Muscular equinus includes:
 A) Spastic equinus
 B) Non-spastic equinus
 C) Distal tibial-fibular osseous bridging
 D) A & B

7) Osseous equinus includes:
 A) Anterior spurring of the ankle joint
 B) Distal tibial-fibular osseous bridging
 C) Pseudoequinus
 D) All of the above

8) There is a gastrocnemius equinus when:
 A) The ankle joint dorsiflexes greater than 90 degrees with the knee extended
 B) The ankle joint dorsiflexes less than 90 degrees with the knee extended
 C) The ankle joint dorsiflexes greater than 90 degrees with the knee flexed
 D) B & C

9) The ______ test is used to determine the type of equinus.
 A) Silfverskold
 B) Coleman block
 C) Hubscher
 D) Jack’s

10) The proximal pathology NOT associated with equinus is:
 A) Hamstring contractures
 B) Quadriceps contractures
 C) Genu recurvatum
 D) Lumbar lordosis

11) Which of the following is NOT seen in a partially compensated equinus?
 A) Early heel-off gait pattern
 B) The heel is on the ground
 C) Toe walking
 D) Tibia does not achieve 10 degrees of flexion to the ground

12) The most common definition of equinus is 10 degrees of dorsiflexion with:
 A) The knee extended
 B) The subtalar joint in neutral
 C) The midtarsal joint locked
 D) All of the above

13) According to the study by Aronow, when a load was applied to the gastrocnemius muscle, which of the following did NOT happen?
 A) Rearfoot pressures decreased
 B) Midfoot pressures decreased
 C) Midfoot pressures increased
 D) Forefoot pressures increased

14) According to the study by Mueller, which occurred as an effect of a tendo-Achilles lengthening?
 A) Forefoot pressures increased
 B) Forefoot pressures decreased
 C) Rearfoot pressures decreased
 D) Rearfoot pressures remained the same

15) What percentage of plantar fasciitis cases was associated with equinus in the study by Patel and DiGiovanni?
 A) 95%
 B) 100%
 C) 83%
 D) 50%

SEE ANSWER SHEET ON PAGE 167.
16) Hill states that it is important to do which of the following when stretching the calf muscles:
 A) Adduct the foot 10 degrees
 B) Abduct the foot 10 degrees
 C) Keep the foot at 0 degrees
 D) Stretch for 30 seconds

17) According to Evans’ study, how many patients (out of 20) achieved 10 degrees of dorsiflexion with the use of night splints?
 A) 10
 B) 15
 C) 16
 D) 6

18) What is the recommended stretching time period using the EQ/IQ brace?
 A) 30 minutes per day
 B) 30 minutes twice per day
 C) 60 minutes twice per day
 D) 6-8 hours while sleeping

19) Based on the study by Herzenberg and Lamm, which of the following is most effective?
 A) A double gastrocnemius recession
 B) A soleus recession
 C) A single gastroc recession
 D) A single gastroc with the addition of a single soleus recession

20) A meta-analysis by Radford, et al. showed that calf muscle stretching provided:
 A) A decrease in ankle joint dorsiflexion
 B) No change in the amount of ankle dorsiflexion achieved
 C) An increase in ankle joint dorsiflexion
 D) An increase in knee flexion

See answer sheet on page 167.
Enrollment/Testing Information and Answer Sheet

Note: If you are mailing your answer sheet, you must complete all info. on the front and back of this page and mail with your credit card information to: Podiatry Management, P.O. Box 490, East Islip, NY 11730.

TESTING, GRADING AND PAYMENT INSTRUCTIONS

1. Each participant achieving a passing grade of 70% or higher on any examination will receive an official computer form stating the number of CE credits earned. This form should be safeguarded and may be used as documentation of credits earned.

2. Participants receiving a failing grade on any exam will be notified and permitted to take one re-examination at no extra cost.

3. All answers should be recorded on the answer form. For each question, decide which choice is the best answer, and circle the letter representing your choice.

4. Complete all other information on the front and back of this page.

5. Choose one out of the 3 options for test grading: mail-in, fax, or phone. To select the type of service that best suits your needs, please read the following section, “Test Grading Options”.

TEST GRADING OPTIONS

Mail-In Grading
To receive your CME certificate, complete all information and mail with your credit card information to:

Podiatry Management
P.O. Box 490, East Islip, NY 11730

Facsimile Grading
To receive your CPME certificate, complete all information and fax 24 hours a day to 1-631-563-1907. Your CPME certificate will be dated and mailed within 48 hours. This service is available for $2.50 per exam if you are currently enrolled in the annual 10-exam CPME program (and this exam falls within your enrollment period), and can be charged to your Visa, MasterCard, American Express.

If you are not enrolled in the annual 10-exam CPME program, the fee is $22 per exam.

Phone-In Grading
You may also complete your exam by using the toll-free service. Call 1-800-232-4422 from 10 a.m. to 5 p.m. EST, Monday through Friday. Your CPME certificate will be dated the same day you call and mailed within 48 hours. There is a $2.50 charge for this service if you are currently enrolled in the annual 10-exam CPME program (and this exam falls within your enrollment period), and this fee can be charged to your Visa, Mastercard, American Express, or Discover. If you are not currently enrolled, the fee is $22 per exam.

In the event you require additional CPME information, please contact PMS, Inc., at 1-631-563-1604.

ENROLLMENT FORM & ANSWER SHEET

Please print clearly...Certificate will be issued from information below.

<table>
<thead>
<tr>
<th>Name</th>
<th>Soc. Sec. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please Print: FIRST</td>
<td>MI</td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>State</td>
</tr>
<tr>
<td>Charge to:</td>
<td>Visa</td>
</tr>
<tr>
<td>Card #</td>
<td>Exp. Date</td>
</tr>
</tbody>
</table>

Note: Credit card is the only method of payment. Checks are no longer accepted.

<table>
<thead>
<tr>
<th>Signature</th>
<th>Soc. Sec. #</th>
<th>Daytime Phone</th>
</tr>
</thead>
</table>

| State License(s) | Is this a new address? Yes | No |

Check one:

- [] I am currently enrolled. (If faxing or phoning in your answer form please note that $2.50 will be charged to your credit card.)

- [] I am not enrolled. Enclosed is my credit card information. Please charge my credit card $22.00 for each exam submitted. (plus $2.50 for each exam if submitting by fax or phone).

- [] I am not enrolled and I wish to enroll for 10 courses at $169.00 (thus saving me $51 over the cost of 10 individual exam fees). I understand there will be an additional fee of $2.50 for any exam I wish to submit via fax or phone.

Over, please
EXAM #7/12
Understanding Equinus
(DeHeer)

Circle:
1. A B C D 11. A B C D
3. A B C D 13. A B C D
5. A B C D 15. A B C D
7. A B C D 17. A B C D
8. A B C D 18. A B C D
10. A B C D 20. A B C D

LESSON EVALUATION

Please indicate the date you completed this exam

How much time did it take you to complete the lesson?
_____ hours _____ minutes

How well did this lesson achieve its educational objectives?
______ Very well ________ Well
______ Somewhat ________ Not at all

What overall grade would you assign this lesson?
A B C D

Degree____________________________

Additional comments and suggestions for future exams:
__
__
__
__
__
__
__