Identification and Management of Clubfoot

Learn about the genetics, characteristics, and history of this well-known deformity.

Objectives

1) To know the nature of clubfoot deformity, including the general incidence, genetics, and clinical characteristics.

2) To know and evaluate the basic theories for the origin of clubfoot.

3) To know the natural history of surgically corrected and non-surgically corrected clubfoot.

4) To know the clinical characteristics of clubfoot at all different stages, including infant, childhood, adult, and neglected clubfoot.

5) Specifically to know the general nature of the operations for clubfoot deformity, including the Turco procedure and the complete subtalar joint release.

6) To know the results of studies comparing the Turco procedure and the complete subtalar joint release and to know the advantages and disadvantages of each operation.

7) To be aware of the management of clubfoot at all different stages, including infant, childhood, adult, and neglected clubfoot.

Incidence and Genetics

Congenital talipes equinovarus (clubfoot) is one of the most instantly recognizable birth defects consisting of rigid hindfoot varus, forefoot adductus, forefoot varus, and ankle equinus (Figure 1). Approximately 1/1000 births is a clubfoot, with males affected two times as frequently as females, the right foot involved more commonly than the left and 50% bilateral.¹ After one child in a family is born with a clubfoot, the risk to a second child is increased to one in twenty or approximately five percent (Table 1).¹

Not only does the risk of clubfoot increase after a previous child is born with the deformity, but the deformity is more rigid as well.

Continued on page 132
Clubfoot occurs in all races and ethnicities; however, Asians have the lowest incidence (about 0.57 per 1,000 live births) and Polynesians have the highest rate of clubfoot (Almost 7 per 1,000 live births). There are four categories of clubfoot: postural (positional and corrects with casting), congenital (rigid clubfoot, isolated deformity), teratological (e.g., associated with spina bifida), and clubfoot occurring as part of a syndrome. The most common form of congenital clubfoot, the idiopathic variety, is inherited by a polygenic multi-factorial inheritance with a sex-linked threshold effect.

The clubfoot deformity cannot occur until the number of abnormal genes exceeds the threshold level. The threshold is sex-related, with a higher tolerance being found in females. Females need more genes to have a clubfoot, but when they do exceed the threshold number of genes the deformity is worse than in males. The deformity is less severe in males because males with clubfoot have fewer clubfoot genes. However, we have found that the female clubfoot patients correct more easily and need fewer surgeries, perhaps due to the inherently greater degree of ligamentous laxity in females.

Etiology

Several theories have evolved to explain the still unknown etiology of clubfoot. More than 2400 years ago, Hippocrates believed that intrauterine pressure and rapid skeletal growth were responsible for the malposition of clubfoot. Brown attributed congenital clubfoot to a mechanical deformity of intrauterine crowding or packaging. However, deformities caused by intrauterine crowding, also known as postural defects (e.g., congenital hip dislocation, metatarsus adductus, and calcaneovalgus) are more common in firstborns, which is not the case with clubfoot.

In 1929, Bohm noted that in the fifth week of gestation, there is no difference between the normal foot and the eventual clubfoot. Thus, Bohm felt that the cause of clubfoot was a developmental arrest, which occurred during pregnancy. A study of 147 specimens from the eighth to the twenty-first week of gestational age showed that at the ninth week of pregnancy the normal foot was structurally similar to a clubfoot, but by the eleventh week the normal foot developed out of the clubfoot position.

The germ plasm defect theory states that a defect in the primary germ plasm of the talus results in plantar flexion and inversion of the talar head and neck with secondary soft tissue changes. The talar deformity is now considered secondary to muscle imbalance, soft tissue contractures rather than the primary deformity.

There may be a primary deformity in neurogenic tissue creating a type I fiber predominance leading to contractile imbalances, which eventually result in
Clubfoot...

Clubfoot.20-22 Studies have found a defect in innervation of muscles of the lower extremity in infants with clubfoot.23-24 Other neurologic theories include peroneal nerve compression25, and enteroviral infection of the anterior horn cells during pregnancy.26

Muscular and collagen dysfunction localized to the posterior and medial aspect of the foot and leg may induce the development of clubfoot some time during the middle of pregnancy.27 Ippolito and Ponseti28 found that the distal muscles on the posteromedial aspect of the foot showed decrease in size and number of muscle fibers and increased fibrous connective tissue within the muscles, tendon sheaths and fascia with shortening to the tendoAchilles (retracting fibrosis). After also finding that the spinal cord from a 17-week old fetus was normal histologically, they concluded that clubfoot was not secondary to neuromuscular defects.

The posterior tibial artery is the most dominant vessel in the clubfoot with the dorsalis pedis being hypoplastic.29 This is theorized to result in medial foot and ankle tethering with secondary scarring, which results in the clubfoot.

Pathoanatomy
The clubfoot is a small, deformed foot with rigid hindfoot varus, forefoot adductus, forefoot varus, and ankle equinus. The head and neck of the talus is deviated medially and plantarly. The navicular is dislocated medially and in severe clubfoot may abut against the medial malleolus.30-32 Although the talar head and neck are medially and plantarly deviated, the body of the talus is actually laterally rotated on its longitudinal axis and the ankle mortise.31 This results in posterior displacement of the fibula, and the lateral malleolus may be posteriorly displaced off its articular talar facet, which is known as a horizontal breach.

Both the talus and calcaneus are in equinus. The calcaneus is in a plantarflexed and inverted position. The talonavicular and calcaneocuboid joints are deviated medially and plantarly. The tendo Achillis, tibialis posterior, and toe flexor are shortened while the peroneal muscles are stretched and weakened.34

The posterior muscle group, the invertors and the intrinsic foot muscles are tight. Contracted ligaments include the long and short plantar ligaments, the spring ligament, the calcaneofibular ligament, talofibular ligament. The posterior ankle joint capsule, the talonavicular joint capsule, the calcaneocuboid capsule, and the plantar fascia are also contracted.

Clinical & Radiographic Characteristics
The clinical diagnosis of clubfoot is obvious (Figure 1), especially when unilateral presenting with a...
Clubfoot...

small, short, stiff, deformed-looking foot with prominent ankle equinus as compared to the non-affected side. In some infants, there is a deep plantar medial transverse and posterior crease. The heel of the clubfoot stays in a fixed varus and equinus position. Hindfoot equinus is caused by plantarflexion of the talus, contracture of the posterior ankle capsule and shortening of the tendoAchilles. The heel looks small and high, and, upon palpation, feels like the heel pad is empty. The forefoot is adducted and held in a fixed varus attitude. The forefoot position is due to and follows the medially and plantarly directed talar head and neck deformity.

The calf muscles are shortened and underdeveloped. Calf atrophy, formerly thought to be caused by wearing a cast for a long period, is an inherent part of clubfoot and is noticeable in older children particularly with unilateral clubfoot, with the clubfoot side also having a slightly shorter limb and shorter foot. We have found that in children with clubfoot the foot length, limb length and calf girth are approximately one inch less on the affected side.36

The most common radiographs are the weight bearing anteroposterior (AP) and lateral radiographs with the foot held in maximum dorsiflexion. The AP talocalcaneal angle (angle of Kite) is a reflection of varus deformity of the rearfoot (Figure 2). The normal value for the AP talocalcaneal angle is between 20 to 40° and is reduced in a clubfoot. The lateral x-ray demonstrates equinus deformity. In the lateral view of forced dorsiflexion, the calcaneus and talus are both in equinus and almost parallel to each other (Figure 3). The normal value for the lateral talocalcaneal angle is 20 to 40° and is also reduced in the clubfoot. The values of the AP talocalcaneal angle and the lateral talocalcaneal angle can be added together to give the talocalcaneal index, which is thought to be more accurate than one value alone. Normal values for the talocalcaneal index are from 40 to 70°. The degree of adduction of the forefoot is measured by the AP talar first metatarsal angle. Normal is zero degrees to minus 20°. The clubfoot shows increased adduction of the forefoot.

Conservative Treatment

Treatment of congenital clubfoot generally consists of manipulation and serial casting followed by surgical intervention in approximately 50% of cases (Figure 4).36-39 Recently, there has been a resurgence of non-surgical techniques as the sole treatment for clubfoot.27,41,42 Results of studies of conservative treatment report success rates as high as 95 to 100%.41-45

Treatment begins shortly after birth or approximately three to five days after birth taking advantage of the favorable fibroelastic properties of the connective tissue, which forms the ligaments, joint capsules and tendons.46 Clubfeet become stiffer with delay in onset of treatment.44 Mild clubfoot treated immediately after birth may easily correct, but may take months of serial casting if treatment is delayed for only a few weeks.47

Continued on page 135

TABLE 1: HEREDITY OF CLUBFOOT

<table>
<thead>
<tr>
<th>INCIDENCE</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>General population</td>
<td>1/1000</td>
</tr>
<tr>
<td>Risk to 2nd child after 1st child born with clubfoot</td>
<td>1/20*-1/50</td>
</tr>
<tr>
<td>Risk to 3rd child after 1st two children born with clubfoot</td>
<td>1/7*</td>
</tr>
<tr>
<td>Risk to 4th child after three children born with clubfoot</td>
<td>1/2*</td>
</tr>
<tr>
<td>One parent has clubfoot/1st child born with clubfoot-Risk to 2nd child of being born with clubfoot</td>
<td>1/4**</td>
</tr>
<tr>
<td>Risk to first degree relatives (i.e., brother)</td>
<td>-1/50</td>
</tr>
<tr>
<td>Risk to second degree relatives (i.e., aunt)</td>
<td>5-6/1000</td>
</tr>
<tr>
<td>Risk to third degree relatives (i.e., cousin)</td>
<td>2/1000</td>
</tr>
<tr>
<td>Fraternal twins (both affected)</td>
<td>-1/20</td>
</tr>
<tr>
<td>Identical twins (both affected)</td>
<td>1/3</td>
</tr>
<tr>
<td>Associated with malformations of the extremities</td>
<td>1/20</td>
</tr>
</tbody>
</table>

Clubfoot...

Above knee casts are required by some, but others prefer below knee casts. Although a plaster cast molds better, recently some surgeons have found that fiberglass casts hold the foot better than plaster casts.

Magnetic resonance imaging has demonstrated that the talonavicular and calcaneocuboid joints remodel and become congruent in the corrected position after four to six weeks of manipulation and serial casting. The need for casting much beyond three months is indicative that non-surgical treatment is unlikely to be effective. Further casting past the point of resistance or relapse increases the risk of developing a rocker bottom foot.

Ponseti Technique

The Ponseti technique involves serial casting combined with tendoAchilles lengthening when necessary. Denis-Browne Bar splinting is used for three months full-time and at night for two to four years to prevent relapse. A recent thirty year follow-up of 71 clubfeet treated with the Ponseti technique showed that 85% of individuals functioned as well as a comparative non-clubfoot group. However, patients with clubfoot who were engaged in sedentary occupations and were non-obese, tended to have the best functioning feet.

Surgical Correction

Treatment for the true clubfoot invariably requires surgery. In fact it is not uncommon for a second surgery to be necessary three to four years after the original operation. The second surgical procedure frequently involves repeat soft tissue release with additional bone work as needed. In a recent study we found that more than one clubfoot operation was required in 56% of 27 clubfeet.

Age for Surgery

The exact age for surgery is a controversial subject and quite variable. While neonatal clubfoot surgery has produced good results, it is not frequently performed because of the increased incidence of post-operative fibrosis, scarring and stiffness. Surgery between three and six months of age may optimize realignment of the talus, calcaneus, and navicular and results in better remodeling of the articular surfaces. The risks of general anesthesia are reduced after the age of six months. Turco thought that children should be operated on when they are older than 1 year of age. He felt that operations in very young children were technically more difficult to perform and that errors of over-correction or under-correction would be magnified with subsequent growth. If the child was ready to walk when the casts were removed, the natural dorsiflexion force produced by weightbearing would make recurrence less likely. In another large study good or excellent results were obtained in 94% of individuals functioned as well as a comparative non-clubfoot group. However, patients with clubfoot who were engaged in sedentary occupations and were non-obese, tended to have the best functioning feet.

Continued on page 136
 weighs at least 12 pounds and is thriving well.

Nature of the Surgical Procedure

The initial clubfoot surgery almost always involves pure soft tissue release of the deforming contracted tight structures with no bony procedures. There are a variety of soft tissue releases, which differ mostly in degree.

Turco Procedure

Turco introduced the one stage soft-tissue posteromedial release with internal fixation, which is still used widely today. The Turco procedure serves as the baseline from which many modifications and variations have evolved. The posterior and medial soft tissue contractures are released to permit the realignment of the abnormal anatomy of the bones and the corrected realignment is fixed with a single Kirschner wire through the talonavicular joint. The postoperative stiffness of the foot with the Turco procedure is considerably less than the more extensive soft tissue releases.

Modified Turco Technique

The authors prefer a modified Turco procedure, ideally performed between the ages of about 9 months and 2 years (Figure 5). A tourniquet is not used because of the irregularities of vasculature in the clubfoot. A 15-centimeter hockey stick incision is made starting from above the malleolus and running to the base of the first metatarsal (Figure 6). A medial linear incision should never be done because it is
Clubfoot...

not long enough to open the desired areas.

The medial release is performed first to correct the hindfoot varus and adductus. The medial release includes: posterior tibial tendon lengthening, talonavicular joint capsulotomy, superficial deltoid ligament release, spring ligament release, subtalar joint release of capsules and navicular realignment, which requires K-wire fixation (Figure 7).

The master knot of Henry is attached to the navicular and encloses the FHL and the FDL as they cross each other under the navicular. This fibrous tissue must be released to allow for an adequate soft tissue release although lengthening of the FDL and FHL may not be necessary. Of these two tendons the FDL is the more deforming factor.

The posterior release corrects ankle equinus and includes “Z” plasty of the tendoAchilles for lengthening, ankle and subtalar joint capsulotomy, calcaneofibular ligament release, and superficial deltoid ligament release, interosseous ligament release, and tibiofibular ligament release. Note that if the clubfoot will not reduce unless the interosseous ligament is released. Avoiding release of the deep deltoid ligament will prevent over-correction.

A plantar release may be added to help to reduce residual metatarsus adductus. This involves release of the first layer of plantar intrinsic muscles to include the abductor hallucis, the abductor digitii quinti, the flexor digitorum brevis, and the plantar fascia. At the end of the surgery the foot should reduce to a neutral position (90° foot to the leg) (Figure 8).

An above knee cast is applied postoperatively during the first four to six weeks (Figure 9). A plaster cast is used for the best molding with a fiberglass top layer to make the cast more durable. A second above knee cast is applied for another three weeks bringing the patient to the eighth week of surgery. Below knee casting may be continued for up to six months to correct any residual deformities. Tone reducing ankle foot orthoses during the day, club-foot shoes, and night splinting are frequently used until maturity to prevent relapse.

Cincinnati Incision

The Cincinnati incision is a transverse incision for increased exposure to the medial, lateral, and posterior aspect of the foot and ankle. The incision extends from the medial to

Continued on page 138
above and so-called complete circumferential soft tissue releases is that the latter involves total release of the subtalar joint. When this is done surgical pin fixation and casting must be left in place for three to four months. Complete subtalar joint release has been advocated by a variety of authors. McKay believes that the calcaneus is rotated around a vertical axis with the anterior calcaneus internally rotated and the posterior calcaneus externally rotated. The operation involves rotating the calcaneus at the subtalar joint level. The McKay one-stage subtalar soft-tissue release is a circumferential soft-tissue release which involves releasing the posterior, medial, lateral, and plantar soft tissues of the foot.

In one study comparing the McKay complete circumferential release with the Turco posteromedial release, patients with the more com-

Continued on page 140

TABLE 2: Calf Girth, Foot Length, Limb Length Discrepancy, Results of Studies

<table>
<thead>
<tr>
<th>Calf Girth</th>
<th>Calf Girth (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laveeg & Ponseti, 1980 (96)</td>
<td>0.9</td>
</tr>
<tr>
<td>Ghali, Smith, Clayden, Silk, 1983 (97)</td>
<td>0.5</td>
</tr>
<tr>
<td>Ricciardi-Polini, Ioppolito, Tudisco, Farsetti, 1984 (98)</td>
<td>1.4</td>
</tr>
<tr>
<td>Magone, Torch, Clark, Kean, 1989 (88)</td>
<td>1.3</td>
</tr>
<tr>
<td>Aronson & Puskarich, 1990 (35)</td>
<td>0.3</td>
</tr>
<tr>
<td>Atar, Lehman, Grant, Strongwater, 1991 (61)</td>
<td>1.1</td>
</tr>
<tr>
<td>Devalentine & Blakeslee, 1992 (99)</td>
<td>1</td>
</tr>
<tr>
<td>Cohen-Sobel, Caselli, Giorgini, Giorgini, Stummer, 1993 (36)</td>
<td>0.83</td>
</tr>
<tr>
<td>Blakeslee, 1997 (100)</td>
<td>.5 (mild clubfoot)</td>
</tr>
<tr>
<td>Ugrow & Clarke, 2000 (71)</td>
<td>.72 (moderate clubfoot)</td>
</tr>
<tr>
<td>Reichel, Lebek, Millikic, Hein, 2001 (80)</td>
<td>.72 (severe clubfoot)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Foot Length</th>
<th>Foot Length (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bjonness, 1975 (101)</td>
<td>0.8</td>
</tr>
<tr>
<td>Laveeg & Ponseti, 1980 (96)</td>
<td>0.5</td>
</tr>
<tr>
<td>Magone, Torch, Clark, Kean, 1989 (88)</td>
<td>0.5</td>
</tr>
<tr>
<td>Atar, Lehman, Grant, Strongwater, 1991 (61)</td>
<td>0.6</td>
</tr>
<tr>
<td>Aronson & Puskarich, 1990 (35)</td>
<td>0.5</td>
</tr>
<tr>
<td>DeValentine & Blakeslee, 1992 (99)</td>
<td>0.8</td>
</tr>
<tr>
<td>Cohen-Sobel, Caselli, Giorgini, Giorgini, Stummer, 1993 (36)</td>
<td>0.8</td>
</tr>
<tr>
<td>Blakeslee, 1997 (100)</td>
<td>0.6</td>
</tr>
<tr>
<td>Huang, Lei, Zhao, Wange, 1999 (78)</td>
<td>0.6</td>
</tr>
<tr>
<td>Reichel, Lebek, Millikic, Hein, 2001 (80)</td>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limb Length Difference</th>
<th>Limb Length Difference (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laveeg & Ponseti, 1980 (96)</td>
<td>0</td>
</tr>
<tr>
<td>Ghali, Smith, Clayden, Silk, 1983 (97)</td>
<td>0.5</td>
</tr>
<tr>
<td>Hutchins, Foster, Paterson, Cole, 1985 (55)</td>
<td>0.4</td>
</tr>
<tr>
<td>Atar, Lehman, Grant, Strongwater, 1991 (61)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

*Numbers in parenthesis refer to reference list.
More recently, Haasbeek and Wright compared the results of posterior release with those of comprehensive release with an average 21-year follow-up. They found that the group with comprehensive releases had fewer surgeries, more complete release had more complete correction and greater range of motion.

TABLE 3: CLINICAL RESULTS OF CLUBFOOT STUDIES
(Forefoot Adductus/Heel Varus/Heel Valgus/Cavus/Ankle Dorsiflexion)

<table>
<thead>
<tr>
<th>Forefoot Adductus</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenborough, 1972 (102)*</td>
<td>79%</td>
</tr>
<tr>
<td>Low & Hannon, 1973 (103)</td>
<td>52%</td>
</tr>
<tr>
<td>Main & Crider, Polk, Lloyd-Roberts 1977 (56)</td>
<td>78%</td>
</tr>
<tr>
<td>Main & Crider, 1978 (104)</td>
<td>69%</td>
</tr>
<tr>
<td>Hutchins, Foster, Paterson, Cole, 1985 (55)</td>
<td>20%</td>
</tr>
<tr>
<td>Otremski, Salama, Khermosh, Wientraub, 1987a (62)</td>
<td>48%</td>
</tr>
<tr>
<td>Otremski, Salama, Khermosh, Wientraub, 1987b (105)</td>
<td>9%</td>
</tr>
<tr>
<td>Brougham & Nicol, 1988 (66)</td>
<td>66%</td>
</tr>
<tr>
<td>Yamamoto & Furuya, 1988 (106)</td>
<td>34%</td>
</tr>
<tr>
<td>Lau, Meyer, Lau., 1989 (68)</td>
<td>17%</td>
</tr>
<tr>
<td>Magone, Torch, Clark, Kean, 1989 (88)</td>
<td>51%</td>
</tr>
<tr>
<td>Porat & Kaplan, 1989 (69)</td>
<td>18%</td>
</tr>
<tr>
<td>Yngue, Gross, Sullivan, 1990 (74)</td>
<td>28%</td>
</tr>
<tr>
<td>Tarraf & Carroll, 1992 (70)</td>
<td>81%</td>
</tr>
<tr>
<td>DeValentine & Blakelee, 1992 (99)</td>
<td>41%</td>
</tr>
<tr>
<td>Cohen-Sobel, Caselli, Giorgini, Giorgini, Stummer, 1993 (36)</td>
<td>60%</td>
</tr>
<tr>
<td>Blakeslee, 1997 (100)</td>
<td>41%</td>
</tr>
<tr>
<td>Rumyantsev & Ezrohi, 1997 (75)</td>
<td>12%</td>
</tr>
<tr>
<td>Simbak & Razak, 1998 (107)</td>
<td>63.9% (Metatarsus adductus)</td>
</tr>
<tr>
<td>Joseph, Ajith, Varghese, 2000 (79)</td>
<td>24%</td>
</tr>
<tr>
<td>Uglow & Clarke, 2000 (71)</td>
<td>18.5% mild clubfoot</td>
</tr>
<tr>
<td>Reichel, Lebek, Milikic, Hein, 2001 (80)</td>
<td>39% moderate clubfoot</td>
</tr>
<tr>
<td>Faraj & Nevelos, 2001 (81)</td>
<td>22% severe clubfoot</td>
</tr>
<tr>
<td></td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>31% mild forefoot adductus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heel Varus</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laaveg & Ponseti, 1980 (96)</td>
<td>27%</td>
</tr>
<tr>
<td>Hutchins, Foster, Paterson, Cole, 1985 (55)</td>
<td>17%</td>
</tr>
<tr>
<td>Otremski, Salama, Khermosh, Wientraub, 1987b (105)</td>
<td>9%</td>
</tr>
<tr>
<td>Yamamoto & Furuya, 1988 (106)</td>
<td>11%</td>
</tr>
<tr>
<td>Lau, Meyer, Lau., 1989 (68)</td>
<td>5%</td>
</tr>
<tr>
<td>Magone, Torch, Clark, Kean, 1989 (88)</td>
<td>6%</td>
</tr>
<tr>
<td>Tarraf & Carroll, 1992 (70)</td>
<td>38%</td>
</tr>
<tr>
<td>Cohen-Sobel, Caselli, Giorgini, Giorgini, Stummer, 1993 (36)</td>
<td>35%</td>
</tr>
<tr>
<td>Blakeslee, 1997 (100)</td>
<td>3%</td>
</tr>
<tr>
<td>Rumyantsev & Ezrohi, 1997 (75)</td>
<td>3%</td>
</tr>
<tr>
<td>Simbak & Razak, 1998 (107)</td>
<td>11%</td>
</tr>
<tr>
<td>Joseph, Ajith, Varghese, 2000 (79)</td>
<td>7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heel Valgus (Excessive)</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turco, 1979 (76)</td>
<td>8%</td>
</tr>
<tr>
<td>Ghali, Smith, Clayden, Silk, 1983 (97)</td>
<td>12%</td>
</tr>
<tr>
<td>Otremski, Salama, Khermosh, Wientraub, 1987b (105)</td>
<td>4%</td>
</tr>
</tbody>
</table>

*Numbers in parentheses refer to reference list.
Clubfoot...

complete correction of heel varus, and better subtalar motion than those with posterior releases.

Simons also advocates a one-stage circumferential subtalar joint release, which differs from the McKay procedure in emphasizing the release of the interosseous talocalcaneal ligament as well as the posterior talofibular ligament. He stresses intraoperative radiographs to verify the correction.89,90 Most recently, Simons’ complete subtalar joint release was found to be the most efficient method of surgery both functionally and radiologically, in cases of idiopathic clubfoot in infants, as compared with Turco’s posteromedial release.49 Over-correction is prevented by preserving the deep anterior portion of the deltoid ligament and the interosseous ligament between the talus and calcaneus, avoiding over displacing the navicular laterally, and not over-lengthening the tendo Achilles or the tibialis posterior.49

Carroll’s surgical technique involves internally rotating the talus in the ankle mortise, which requires extensive soft tissue release with complete plantar, lateral, medial and posterior release.94 Posteroplanar and posterolateral release are additional variations of soft tissue release procedures.80,81,95

Results & Evaluation of Surgery

Treatment for clubfoot never results in a normal foot. Calf atrophy, difference in foot size, limb-length difference (Table 2), limitation of ankle joint and subtalar joint mo-

Figure 10. Residual rearfoot varus in child with clubfoot.
Clubfoot...

bility, and in-toe gait are common regardless of treatment (Table 3).36,53 However, treatment should result in a painless, aesthetically pleasing and functional plantigrade foot (Table 4).36

The patient’s gender, whether the deformity is unilateral or bilateral, age at which the child first walked, age at which surgery is performed, the exact nature of the operation, and the type of postopera-

Continued on page 143

<table>
<thead>
<tr>
<th>TABLE 3: CLINICAL RESULTS OF CLUBFOOT STUDIES (Forefoot Adductus/Heel Varus/Heel Valgus/Cavus/Ankle Dorsiflexion) (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEEL VALGUS (Excessive)</td>
</tr>
<tr>
<td>Yamamoto & Furuya, 1988 (106)</td>
</tr>
<tr>
<td>Lau, Meyer, Lau., 1989 (68)</td>
</tr>
<tr>
<td>Porat & Kaplan, 1989 (69)</td>
</tr>
<tr>
<td>Yngue, Gross, Sullivan, 1990 (74)</td>
</tr>
<tr>
<td>Cohen-Sobel, Caselli, Giorgini, Giorgini, Stummer, 1993 (36)</td>
</tr>
<tr>
<td>Rumyantsev & Ezrohi, 1997 (75)</td>
</tr>
<tr>
<td>Reichel, Lebek, Millikic, Hein, 2001 (80)</td>
</tr>
</tbody>
</table>

| CAVUS |
|------------------|------|
| Attenborough, 1972 (102)* | 16% |
| Otremski, Salama, Khermosh, Wientraub, 1987b (105) | 15% |
| Magone, Torch, Clark, Kean, 1989 (88) | 40% |
| Tarraf & Carroll, 1992 (70) | 30% |
| Cohen-Sobel, Caselli, Giorgini, Giorgini, Stummer, 1993 (36) | 18% |
| Blakeslee, 1997 (100) | 22% |
| Simbak & Razak, 1998 (107) | 11% |

| EQUINUS |
|------------------|------|
| Thompson, Richardson, Westin, 1982 (108) | 13% |
| Addison, Fixsen, Lloyd-Robert, 1983 (109) | 38% |
| Otremski, Salama, Khermosh, Wientraub, 1987b (105) | 2% |
| Tarraf & Carroll, 1992 (70) | 15% |
| Blakeslee, 1997 (100) | 3% |
| Rumyantsev & Ezrohi, 1997 (75) | 3% |
| Joseph, Aijith, Varghese, 2000 (79) | 0% |
| Reichel, Lebek, Millikic, Hein, 2001 (80) | 2% |

<table>
<thead>
<tr>
<th>ANKLE DORSIFLEXION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laaveg & Ponset, 1980 (96)</td>
</tr>
<tr>
<td>Hutchins, Foster, Paterson, Cole, 1985 (55)</td>
</tr>
<tr>
<td>Porter, 1987 (110)</td>
</tr>
<tr>
<td>Yamamoto & Furuya, 1988 (106)</td>
</tr>
<tr>
<td>Lau, Meyer, Lau., 1989 (68)</td>
</tr>
<tr>
<td>Porat & Kaplan, 1989 (69)</td>
</tr>
<tr>
<td>Yngue, Gross, Sullivan, 1990 (74)</td>
</tr>
<tr>
<td>Aronson & Puskarich, 1990 (35)</td>
</tr>
<tr>
<td>McHale & Lenhart, 1991 (111)</td>
</tr>
<tr>
<td>Cohen-Sobel, Caselli, Giorgini, Giorgini, Stummer, 1993 (36)</td>
</tr>
<tr>
<td>Hudson & Catterall, 1994 (95)</td>
</tr>
<tr>
<td>Faraj & Nevelos, 2001 (81)</td>
</tr>
</tbody>
</table>

*Numbers in parenthesis refer to reference list.
Clubfoot... Management are all related to the outcomes of surgery. However, it seems that the outcome of treatment in idiopathic clubfoot has also been strongly linked to the severity of the initial clubfoot deformity. For this reason, there has been emphasis on dividing clubfoot into categories of simple and resistant cases in an attempt to predict which will correct most easily.

Attenborough separated clubfoot into easy and difficult clubfoot. He felt that cases which resolved with strapping or serial casting involved the sole deformity of excessive medial deviation of the talus neck at birth. Harold and Walker grouped the clubfoot into three grades based on foot flexibility. Dimeglio et al. divided the clubfoot into four categories of increasing severity. The first group was the completely correctable soft postural clubfeet which these authors felt should not even be included in rating the results of clubfoot surgery because they tend to increase good results. Grade 2 were considered moderate clubfoot. Grade 3 are the resistant but partially reducible clubfeet. Grade 4 were the total stiff teratological clubfeet usually associated with a syndrome such as arthrogryposis. This grading system has been used in studies of the functional outcome of surgery.

Childhood Clubfoot
The childhood clubfoot has frequently

Figure 11A. Left clubfoot is one inch shorter than other side, resulting in pes planovalgus right foot.

Figure 11B. Posterior view of patient from Figure 11A showing compensatory right hindfoot valgus.

Continued on page 144
been altered by serial casting and surgical correction. However, residual deformities are extremely common (Table 2 & 3). Paradoxically, while rearfoot equinus deformity is the most common reason for initial surgery, forefoot adduction is the most common residual problem after clubfoot surgery and results in a noticeable in-toe gait. In-toe gait is the most frequent sequela of the Turco procedure, reported to occur in one-third of all patients. Compensatory lateral tibial torsion may develop to correct the in-toe gait. Residual equinus, varus, and mild cavus deformity is also common (Figure 10).

Generally, ankle and subtalar joint range of motion is found to be reduced in children with clubfoot. Children who can bring their foot to a right angle with the leg (0 degrees dorsiflexion) usually function quite well (Table 3).

During childhood, differences in size between the clubfoot side and the normal side become more apparent. As compared to the normal lower extremity, the lower extremity with the clubfoot is about 1/2 inch shorter, the calf is about one inch thinner and the clubfoot is about an inch shorter in width than the normal foot (Figure 11A/B). Smallness of the foot and calf are an inherent and permanent part of the clubfoot and are not improved by exercises or surgery.

These differences are less pronounced when the clubfoot is bilateral.

Treatment of Childhood Clubfoot

In-toe gait can be treated with shoes with a straight or abducted last. In young children, the Bebac shoe can be used. The Wheaton Brace and other forms of night-splinting may also be helpful.

Continued on page 145
Clubfoot...

If residual equinovarus is severe, daytime bracing may be necessary. Bracing may include the plastic shoe insert type orthosis, which cannot be seen under slacks, or the double or single upright Phelp’s brace. If residual equinovarus and forefoot problems become particularly severe so that the child is tripping and having difficulty walking, repeat clubfoot surgery may be necessary. Approximately 25-50% of all patients require repeat surgery for clubfoot.

Clubfoot in Adults

The adult with clubfoot usually has some of the same deformities that are seen in children (Figure 12). The side with the clubfoot is shorter, the calf is thinner and the foot is smaller. The forefoot may actually be quite wide in relation to the heel from years of walking more on the front part of the foot. Calluses on the outer aspect of the foot, especially the base and head of the fifth metatarsal and the lateral heel, as a result of increased pressure on the lateral side of the foot, are deep and painful. Patients may complain of lateral ankle sprains, and pain from frequently walking on the outside of their feet. Range of motion of the ankle joint and subtalar joint are usually limited. A recent study found that adults with clubfoot usually gravitate to more sedentary occupations.

At skeletal maturity, the corrected clubfoot is one-half shoe size smaller than the non-affected foot.

TREATMENT OF ADULT CLUBFOOT

In treating the adult with clubfoot who has had casting and surgery, residual deformities such as hindfoot varus and equinus and forefoot adductus must be addressed. Initial debridement of painful calluses on the plantar lateral aspect of the foot brings the patient great relief. Patients with ankle sprains and lateral instability are helped by high-top shoes and additions to the lateral aspect of the shoe, such as lateral valgus wedging on the sole of the shoe and lateral buttressing on the outer side of the shoe. Stirrup and cloth ankle braces may be used to support the laterally unstable ankle.

At skeletal maturity, the corrected clubfoot is one-half shoe size smaller than the non-affected foot. Usually buying shoes to fit the larger foot is sufficient. A 1/4 inch heel lift inside the shoe is generally enough to balance a limb length.

Continued on page 146
Foot orthotics should have good shock absorption, as the clubfoot is often somewhat rigid and is not a good shock absorber. Foot orthoses may also contain lateral valgus wedging and high lateral flanges.

TABLE 4: FUNCTIONAL RATINGS OF CLUBFOOT STUDIES

<table>
<thead>
<tr>
<th>NEVER/RARELY HAVE PAIN</th>
<th>59%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laaveg & Ponseti, 1980 (96)</td>
<td>59%</td>
</tr>
<tr>
<td>Hutchins, Foster, Paterson, Cole, 1985 (55)</td>
<td>80%</td>
</tr>
<tr>
<td>Yamamoto & Furuya, 1988 (106)</td>
<td>93%</td>
</tr>
<tr>
<td>Aronson & Puskarich, 1990 (35)</td>
<td>93%</td>
</tr>
<tr>
<td>Ynge, Gross, Sullivan, 1990 (74)</td>
<td>68%</td>
</tr>
<tr>
<td>Cohen-Sobel, Caselli, Giorgini, Giorgini, Stummer, 1993 (36)</td>
<td>93%</td>
</tr>
<tr>
<td>Sobel, Giorgini, Michel, Cohen, 2000 (53)</td>
<td>95%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAIN ONLY AFTER ACTIVITY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Green & Lloyd-Roberts, 1985 (58)</td>
<td>13% (pain during activity)</td>
</tr>
<tr>
<td>Porter (1987) (110)</td>
<td>50% (aching legs after exercise)</td>
</tr>
<tr>
<td>Lau, Meyer, Lau, 1989 (68)</td>
<td>11% (pain with strenuous activity)</td>
</tr>
<tr>
<td>Ynge, Gross, Sullivan, 1990 (74)</td>
<td>26% (pain with mild activity)</td>
</tr>
<tr>
<td>Devalentine & Blakeslee, 1992 (99)</td>
<td>40% (occasional pain caused by limping)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAN PERFORM FULL PHYSICAL ACTIVITY</th>
<th>72%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bjonness, 1975 (101)</td>
<td>72%</td>
</tr>
<tr>
<td>Laaveg & Ponseti, 1980 (96)</td>
<td>72%</td>
</tr>
<tr>
<td>Addison, Fixsen, Lloyd-Roberts, 1983 (109)</td>
<td>76%</td>
</tr>
<tr>
<td>Hutchins, Foster, Paterson, Cole, 1985 (55)</td>
<td>90%</td>
</tr>
<tr>
<td>Porter, 1987 (110)</td>
<td>100%</td>
</tr>
<tr>
<td>Brougham & Nicol, 1988 (66)</td>
<td>75%</td>
</tr>
<tr>
<td>Lau, Meyer, Lau, 1989 (68)</td>
<td>90%</td>
</tr>
<tr>
<td>Cohen-Sobel, Caselli, Giorgini, Giorgini, Stummer, 1993 (36)</td>
<td>80%</td>
</tr>
<tr>
<td>Sobel, Giorgini, Michel, Cohen, 2000 (53)</td>
<td>95%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAME SIZE SHOES</th>
<th>95% (Shop shoes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bjonness, 1975 (101)</td>
<td>99%</td>
</tr>
<tr>
<td>Laaveg & Ponseti, 1980 (96)</td>
<td>10%</td>
</tr>
<tr>
<td>Ghali, Smith, Clayden, Silk, 1983 (97)</td>
<td>86%</td>
</tr>
<tr>
<td>Yamamoto & Furuya, 1988 (106)</td>
<td>62%</td>
</tr>
<tr>
<td>Aronson & Puskarich, 1990 (35)</td>
<td>84%</td>
</tr>
<tr>
<td>Cohen-Sobel, Caselli, Giorgini, Giorgini, Stummer, 1993 (36)</td>
<td>91% (for mild clubfoot)</td>
</tr>
<tr>
<td>Uglow & Clarke, 2000 (71)</td>
<td>61% (for moderate clubfoot)</td>
</tr>
<tr>
<td>Uglow & Clarke, 2000 (71)</td>
<td>25% (for severe clubfoot)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIMPING</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Laaveg & Ponseti, 1980 (96)</td>
<td>0%</td>
</tr>
<tr>
<td>Yamamoto & Furuya, 1988 (106)</td>
<td>11%</td>
</tr>
<tr>
<td>Cohen-Sobel, Caselli, Giorgini, Giorgini, Stummer, 1993 (36)</td>
<td>9% (mild limp)</td>
</tr>
<tr>
<td>Uglow & Clarke, 2000 (71)</td>
<td>27% (marked limp)</td>
</tr>
<tr>
<td>Uglow & Clarke, 2000 (71)</td>
<td>11%</td>
</tr>
</tbody>
</table>

*Numbers in parenthesis refer to reference list.
Clubfoot...

Orthotic materials are variable and may include leather, thermoplastics, and polyethylene foams.

Adult Neglected Clubfoot

Many individuals in developing countries receive no treatment for clubfoot either through ignorance or lack of access to medical care. In these countries, clubfoot is a major crippling disorder. Neglected clubfoot contains all the features of congenital clubfoot with secondary changes from weightbearing and walking. Rigid hindfoot equinus and varus and forefoot varus result in a stiff and non-plantigrade foot, which forces the individual to walk on the dorsum of the foot (Figure 13A/B). The skin on the dorsolateral aspect of the foot becomes hypertrophied and pigmented and develops a large subcutaneous bursa. The untreated adult clubfoot is small because the abnormally tight ligaments and tendons present during infancy act as a tether to prevent further growth. Although the foot is stiff and grossly abnormal in shape, pain and osteoarthritis are surprisingly minimal.

Treatment of Adult Neglected Clubfoot

The greatest challenge for these patients is wearing shoes. Their feet are severely deformed and they usually are unable to fit into off-the-shelf shoes. Molded shoes are a necessity for these individuals. Surgery is challenging in adults with neglected clubfoot, and is usually done for cosmetic appearance and to give the patient greater self-esteem. Operations for the neglected adult clubfoot involve major bony reconstruction and triple fusions.

References

Table 5:
Summary of Treatment from Infant to Adult

Infant Clubfoot
- Serial casting for 3-6 months
- Surgical treatment—posterior medial plantar release performed between age 1 and 2

Childhood Clubfoot
- Straight last shoe, abducted last shoe or Bebac shoe for in-toe as a result of forefoot adductus
- High top shoes may be more comfortable if residual equinovarus is present
- Heel lift usually no greater than 1/4-1/2 inch is sufficient to balance limb length difference
- Night splinting after surgery may be required to maintain correction until maturity.
- Day time bracing to control residual equinus may be necessary until maturity.
- Repeat surgery soft tissue release is common for residual equinovarus, cavovarus, and forefoot adductus

Adult Clubfoot
- Debridement of deep callosities on lateral plantar aspect of foot.
- High top shoes, valgus heel and sole wedges, lateral build up on outside of shoes, lateral buttress, lateral float for lateral ankle instability.
- Stirrup or cloth ankle brace to support varus foot and ankle.
- Heel lift from 1/4 to 1/2 inch usually sufficient to balance limb length difference.
- Shoe fitting to larger foot or two different size shoes may be necessary if pronounced difference in size of feet.
- Soft foot orthoses made of leather, foams, spenco, to accommodate and provide shock absorption for rigid clubfoot.

Neglected Adult Clubfoot
- Molded Shoes
- Radical surgery to include total realignment and possibly triple arthrodesis
Clubfoot...

69 Porat S, Kaplan L: Critical analysis of results in club feet treated surgically along the Norris Carroll approach: seven years of experi-

Continued on page 150
Clubfoot...

Ellen Sobel, DPM, Ph.D. is Professor of Podiatric Orthopedics, New York College of Podiatric Medicine, Division of Orthopedics. Diplomate, American Board of Podiatric Orthopedics and Primary Podiatric Medicine. Renato J. Giorgini, DPM is Professor and former Chairman, Division of Surgery, New York College of Podiatric Medicine. Podiatric Surgery and Residency Director, North General Hospital, New York City and Fellow, American College of Foot and Ankle Surgeons.
1) Which statement is INCORRECT about the incidence of clubfoot?
 A) 1/1000 neonates is born with a clubfoot.
 B) Males are affected with clubfoot two times more frequently than females.
 C) The left foot is more frequently involved with clubfoot than the right foot.
 D) 50% of clubfoot is bilateral.

2) Although females are less frequently affected with clubfoot deformity, when a female does have a clubfoot, it is likely to have a more severe clubfoot deformity than in males with clubfoot. This is due to:
 A) Autosomal dominant inheritance
 B) Autosomal recessive inheritance
 C) Sex-linked threshold effect
 D) Polygenic multifactorial inheritance

3) The risk of clubfoot to a second child after the family has given birth to a first born with clubfoot is:
 A) 1 in 100
 B) 1 in 20
 C) 1 in 7
 D) 1 in 5

4) What is the cause of congenital clubfoot?
 A) Multi-factorial genetics, but the actual etiology is largely unknown
 B) Retracting fibrosis
 C) Muscular
 D) Primary germ plasm defect of talar neck resulting in plantar flexion and inversion of the talar neck

5) Which muscle/tendons are stretched and weakened in clubfoot deformity?
 A) TendoAchilles
 B) Tibiales posterior
 C) Flexor digitorum longus
 D) Peroneus longus and peroneus brevis

6) When a child has a unilateral clubfoot, the clubfoot as compared to the unaffected "normal" side is usually:
 A) Shorter leg and thinner calf girth than the normal side
 B) Shorter leg, but not thinner calf girth than the normal side
 C) Thinner calf girth, but not shorter leg than the normal side
 D) Approximately the same leg length and calf girth as compared to the normal side

7) You are x-raying an infant with a left clubfoot. The angle of Kite is 15°. The lateral talocalcaneal angle is 20°. What conclusions can you draw from these results?
 A) The infant does not have clubfoot.
 B) There is a severe equinus deformity with little or no rearfoot varus but the talocalcaneal index is normal.
 C) There is a rearfoot varus deformity, the angle of Kite is abnormally low and the talocalcaneal index is abnormal.
 D) There is both rearfoot varus and equinus deformity, but the talocalcaneal index is normal.

8) Which of the following is INCORRECT regarding serial casting for clubfoot?
 A) Serial casting may involve above knee or below knee casts.
 B) Serial casts can be constructed of plaster or fiberglass.
 C) Ideally casting should be performed immediately after birth or may be delayed to five days after birth.
 D) For very severe rigid clubfoot serial casting should be avoided.

9) What is the Ponseti Technique?
 A) Serial casting combined with tendoAchilles lengthening when necessary.
 B) Soft tissue release.
 C) Posterior medial release.
 D) Combines only conservative measures to correct clubfoot, including serial casting for long periods and Dennis Brown splinting.

10) The best time for a child with clubfoot to undergo surgery is:
 A) As soon after birth as possible.
 B) After the child begins walking.
 C) Before the child begins walking.
 D) Between 3 months and 1 year of age.

11) The initial clubfoot surgery is usually:
 A) Soft tissue release
 B) Soft tissue release combined with appropriate bony procedures
 C) Ponseti procedure
 D) Soft tissue release and calcaneal osteotomy

12) What is the Turco procedure?
 A) Posterior plantar release
 B) Posterior medial release
 C) Posterior medial plantar release
 D) Medial release

13) What is a key advantage of the Turco procedure in correction of clubfoot over more extensive soft tissue releases?
 A) It requires no internal fixation.
 B) There is less postoperative stiffness.
 C) It can be performed at an earlier age.
 D) It requires only one incision.

14) What type of incision is used for the Turco procedure?
 A) Hockey stick incision
 B) Medial linear incision
 C) Cincinnatii incision
 D) Double incision

Continued on page 152
PM’s CPME Program

Welcome to the innovative Continuing Education Program brought to you by Podiatry Management Magazine. Our journal has been approved as a sponsor of Continuing Medical Education by the Council on Podiatric Medical Education.

Now it’s even easier and more convenient to enroll in PM’s CE program!

You can now enroll at any time during the year and submit eligible exams at any time during your enrollment period.

PM enrollees are entitled to submit ten exams published during their consecutive, twelve–month enrollment period. Your enrollment period begins with the month payment is received. For example, if your payment is received on September 1, 2001, your enrollment is valid through August 31, 2002.

If you’re not enrolled, you may also submit any exam(s) published in PM magazine within the past twelve months. CME articles and examination questions from past issues of Podiatry Management can be found on the Internet at http://www.podiatrym.com/cme. All lessons are approved for 1.5 hours of CE credit. Please read the testing, grading and payment instructions to decide which method of participation is best for you.

Please call (631) 563-1604 if you have any questions. A personal operator will be happy to assist you.

Each of the 10 lessons will count as 1.5 credits; thus a maximum of 15 CME credits may be earned during any 12-month period. You may select any 10 in a 24-month period.

The Podiatry Management Magazine CPME program is approved by the Council on Podiatric Education in all states where credits in instructional media are accepted. This article is approved for 1.5 Continuing Education Hours (or 0.15 CEU’s) for each examination successfully completed.

PM’s CME program is valid in all states except Kentucky, Pennsylvania, and Texas.

EXAMINATION (cont’d)

15) When performing a complete subtalar joint release, over-correction can be prevented by preserving the:
 A) Spring ligament
 B) Subtalar joint
 C) Master knot of Henry
 D) Deep Deltoid Ligament

16) The purpose of the plantar release as part of the Turco procedure to correct clubfoot is to:
 A) Correct rearfoot varus
 B) Correct equinus
 C) Correct metatarsus adductus
 D) Correct calcaneus

17) The main problem in extensive soft tissue release of McKay and Simons is:
 A) Over-correction
 B) Long-term reduced range of motion
 C) Poor radiographic results
 D) Patients tend to need more operations

18) Recent studies seem to show that surgical clubfoot patients who had more complete correction of heel varus and better subtalar motion had undergone:
 A) Comprehensive soft tissue releases
 B) Turco release
 C) Cincinnati incision
 D) Ponseti technique

19) According to the results of most studies it would appear that the most important factor which determines the outcome of surgery is:
 A) The age at which the initial operation is performed
 B) The initial severity of the clubfoot
 C) The type of soft tissue release performed at initial operation
 D) Whether the clubfoot is unilateral or bilateral

20) Neglected clubfoot refers to:
 A) Very severe clubfoot
 B) Clubfoot with a particularly strong equinus component
 C) Adult clubfoot with no surgical correction, generally most common in so-called developing or third world countries
 D) Any clubfoot partially corrected by serial casting only, with no surgery.

See answer sheet on page 153.
Over, please

Continuing Medical Education

Please print clearly...Certificate will be issued from information below.

Name ___
Soc. Sec. #______________________________

Please Print: FIRST MI LAST

Address___

City__State_______________________Zip________________________________

Charge to: _____Visa _____ MasterCard _____ American Express
Card #__Exp. Date____________________

Note: Credit card payment may be used only if you are faxing or phoning in your test answers.

TESTING, GRADING AND PAYMENT INSTRUCTIONS

(1) Each participant achieving a passing grade of 70% or higher on any examination will receive an official computer form stating the number of CE credits earned. This form should be safeguarded and may be used as documentation of credits earned.

(2) Participants receiving a failing grade on any exam will be notified and permitted to take one re-examination at no extra cost.

(3) All answers should be recorded on the answer form below. For each question, decide which choice is the best answer, and circle the letter representing your choice.

(4) Complete all other information on the front and back of this page.

(5) Choose one out of the 3 options for test grading: mail-in, fax, or phone. To select the type of service that best suits your needs, please read the following section, “Test Grading Options”.

TEST GRADING OPTIONS

Mail-In Grading

To receive your CME certificate, complete all information and mail with your check to:

Podiatry Management
P.O. Box 490, East Islip, NY 11730

There is no charge for the mail-in service if you have already enrolled in the annual exam CPME program, and we receive this exam during your current enrollment period. If you are not enrolled, please send $17.50 per exam, or $99 to cover all 10 exams (thus saving $76 over the cost of 10 individual exam fees).

Facsimile Grading

To receive your CPME certificate, complete all information and fax 24 hours a day to 1-631-563-1907. Your CPME certificate will be dated and mailed within 48 hours. This service is available for $2.50 per exam if you are currently enrolled in the annual 10-exam CPME program (and this exam falls within your enrollment period), and can be charged to your Visa, MasterCard, or American Express.

If you are not enrolled in the annual 10-exam CPME program, the fee is $20 per exam.

Phone-In Grading

You may also complete your exam by using the toll-free service. Call 1-800-232-4422 from 10 a.m. to 5 p.m. EST, Monday through Friday. Your CPME certificate will be dated the same day you call and mailed within 48 hours. There is a $2.50 charge for this service if you are currently enrolled in the annual 10-exam CPME program (and this exam falls within your enrollment period), and this fee can be charged to your Visa, Mastercard, or American Express. If you are not currently enrolled, the fee is $20 per exam. When you call, please have ready:

1. Program number (Month and Year)
2. The answers to the test
3. Your social security number
4. Credit card information

In the event you require additional CPME information, please contact PMS, Inc., at 1-631-563-1604.

Please print clearly...Certificate will be issued from information below.

Name ___
Soc. Sec. #______________________________

Please Print: FIRST MI LAST

Address___

City__State_______________________Zip________________________________

Charge to: _____Visa _____ MasterCard _____ American Express
Card #__Exp. Date____________________

Note: Credit card payment may be used for fax or phone-in grading only.

Signature__________________________________Soc. Sec.#______________________Daytime Phone_____________________________
State License(s)___________________________Is this a new address? Yes________ No________

Check one: ______ I am currently enrolled. (If faxing or phoning in your answer form please note that $2.50 will be charged to your credit card.)

_______ I am not enrolled. Enclosed is a $17.50 check payable to Podiatry Management Magazine for each exam submitted. (plus $2.50 for each exam if submitting by fax or phone).

_______ I am not enrolled and I wish to enroll for 10 courses at $99.00 (thus saving me $76 over the cost of 10 individual exam fees). I understand there will be an additional fee of $2.50 for any exam I wish to submit via fax or phone.

Over, please
EXAM #8/02
Clubfoot
(Sobel/Giorgini)

Circle:
1. A B C D
2. A B C D
3. A B C D
4. A B C D
5. A B C D
6. A B C D
7. A B C D
8. A B C D
9. A B C D
10. A B C D
11. A B C D
12. A B C D
13. A B C D
14. A B C D
15. A B C D
16. A B C D
17. A B C D
18. A B C D
19. A B C D
20. A B C D

LESSON EVALUATION

Please indicate the date you completed this exam

How much time did it take you to complete the lesson?

_____ hours _____ minutes

How well did this lesson achieve its educational objectives?

_____ Very well _____ Well

_____ Somewhat _____ Not at all

What overall grade would you assign this lesson?

A B C D

Degree___________________________

Additional comments and suggestions for future exams:

__

__

__

__

__

__