The Non-Surgical Treatment of Equinus

If the pathology can be treated conservatively, then the equinus deformity must also be simultaneously treated conservatively.

BY PATRICK A. DEHEER, DPM

New Concepts and Studies

“New Concepts” is a forum for the presentation of (1) new technologies and products which have been the subject of clinical study, and (2) new studies involving existing products. Readers should be aware that Podiatry Management does not specifically endorse any of the technologies, concepts, or products being discussed.

Continued on page 134

Equinus deformity has been associated with over 96% of biomechanically-related foot and ankle pathologies.

Editor’s Note: This is the first in a new series of PM articles dedicated to a practical approach to biomechanics—that is, articles that will present biomechanically-focused information that can be used on a day-to-day basis in podiatric practices.

Equinus deformity has been associated with over 96% of biomechanically-related foot and ankle pathologies; and although there has been significant advancement in the surgical treatment of equinus, little or no advance has been made in its non-surgical treatment.1 The treatment of any pathological condition mandates comprehensive treatment of all components of the pathology, and this is particularly important in biomechanical pathologies with an underlying equinus component. With the growing body of evidence-based research regarding the importance of equinus, it is important to have an understanding of the fundamentals of non-surgical equinus therapy.

What is the definition of equinus?

When discussing any component of equinus, the starting point must be standardizing the definition. The lack of a standard definition has led to much confusion. Many of the proposed definitions in the literature are based solely on anecdotal evidence, until DiGiovanni et al provided an evidence-based answer to this long-standing question in their landmark article “Isolated Gastrocnemius Tightness.”2 The study consisted of 34 symptomatic patients with a multitude of common foot or ankle pathologies and 34 control patients without any foot or ankle pathology. Not only did they examine ankle joint dorsiflexion in both groups with the knee extended and knee flexed, they also evaluated the accuracy of clinical evaluation with a goniometer compared to a validated ankle joint dorsiflexion method of measurement.

Clearly, the literature shows questionable reliability of measuring ankle joint dorsiflexion using a goniometer, but this study did provide some validation of the method most commonly employed by clinicians to assess equinus.3,4 Their conclusion stated, “We have selected < 5° of maximal ankle dorsiflexion with the knee in full extension as the definition of equinus.”5

Continued on page 134
Equinus (from page 133)

as our definition because it allowed us to diagnose the problem in those who were at risk (symptomatic pa-

ighbors) with fairly good reproducibility (76%) and, more importantly, we were able to reliably avoid (in 94% of the cases) unnecessary treatment of those who were not at risk (asymptomatic people).” Regarding the reliability of using a goniometer to measure equinus clinically, they stated, “Clinical examination was

Continued on page 136

<table>
<thead>
<tr>
<th>Lower Extremity Orthopedic Pathology Related to Equinus</th>
<th>Reference(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantar heel pain/plantar fasciitis</td>
<td>1, 2, 5, 6, 7, 8, 9, 10, 58, 59, 60, 61, 62, 63, 64, 65, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 88, 101, 102, 103, 111</td>
</tr>
<tr>
<td>Achilles tendonitis/tendonosis</td>
<td>1, 11, 12, 13, 21, 22, 57, 77, 78</td>
</tr>
<tr>
<td>Posterior tibial tendon dysfunction/Adult flat foot deformity</td>
<td>2, 10, 14, 15, 16, 17, 18, 19, 20, 35, 36, 57, 78, 79</td>
</tr>
<tr>
<td>Muscle strains</td>
<td>23</td>
</tr>
<tr>
<td>Stress fractures</td>
<td>22, 24, 48, 88</td>
</tr>
<tr>
<td>Shin splints/Medial tibial stress syndrome</td>
<td>22, 24, 25, 46, 88</td>
</tr>
<tr>
<td>Iliotibial band syndrome</td>
<td>24, 25</td>
</tr>
<tr>
<td>Patellofemoral syndrome</td>
<td>26, 88</td>
</tr>
<tr>
<td>Ankle sprains/fractures</td>
<td>27</td>
</tr>
<tr>
<td>Diabetic foot ulcers</td>
<td>28, 29, 30, 31, 32, 39, 43, 78, 79, 122, 123, 124</td>
</tr>
<tr>
<td>Charcot deformity</td>
<td>33, 34, 37, 38, 39</td>
</tr>
<tr>
<td>Metatarsalgia</td>
<td>1, 2, 10, 16, 20, 36, 62, 78</td>
</tr>
<tr>
<td>MPJ synovitis/PDS</td>
<td>10</td>
</tr>
<tr>
<td>Hallux abducto valgus</td>
<td>1, 2, 16, 20, 40, 52, 66, 78</td>
</tr>
<tr>
<td>Hammer toes/Claw toes</td>
<td>20, 44, 78</td>
</tr>
<tr>
<td>Lis Franc’s/Midfoot arthrosis</td>
<td>35, 53, 78</td>
</tr>
<tr>
<td>Hallux limitus/Hallux rigidus</td>
<td>41, 68</td>
</tr>
<tr>
<td>Forefoot calluses</td>
<td>1, 20</td>
</tr>
<tr>
<td>Morton’s neuroma</td>
<td>38, 45, 78</td>
</tr>
<tr>
<td>Chronic ankle instability</td>
<td>47, 88</td>
</tr>
<tr>
<td>Poor balance/Increased fall rate in elderly</td>
<td>49, 89</td>
</tr>
<tr>
<td>Sever’s disease</td>
<td>50, 51</td>
</tr>
<tr>
<td>Pediatric flatfoot</td>
<td>54, 55</td>
</tr>
<tr>
<td>Lateral foot pain</td>
<td>1</td>
</tr>
<tr>
<td>Genu recurvatum</td>
<td>38</td>
</tr>
<tr>
<td>Low back pain</td>
<td>38</td>
</tr>
<tr>
<td>Arch pain</td>
<td>62</td>
</tr>
<tr>
<td>Ankle arthrosis</td>
<td>78, 79</td>
</tr>
<tr>
<td>Subtalar arthrosis</td>
<td>78</td>
</tr>
<tr>
<td>Sesamoiditis</td>
<td>78</td>
</tr>
<tr>
<td>Anterior compartment syndrome</td>
<td>88</td>
</tr>
</tbody>
</table>
Equinus (from page 134)

demonstrated to be fairly reliable in identifying muscle tightness.”

What is the frequency of equinus?

Hill looked at the frequency of equinus by examining 206 new patients over a six-week period of time.29 of the patients’ primary complaints did not meet the study criteria, and they were excluded from the study. Of the remaining 174 patients, six were found to have normal ankle joint dorsiflexion (normal ≥ 3° ankle joint dorsiflexion with the knee extended). The primary finding of the study was that 96.5% of the patients with foot or ankle pathology exhibited equinus.

What are the biomechanics of equinus?

Several studies have demonstrated that during stance phase, a maximum of 8 to 10° of dorsiflexion above 90° must occur at the ankle just before heel-off, with the knee in full extension for normal gait.42,114,115 Contracture of the gastroc-soleal complex has been shown to restrict the normal advancement of the tibia over the foot during mid-stance, resulting in proximal and distal compensation.8,36,114,116 During mid-stance, as the tibia is moving over the foot, the knee is fully extended resulting in more

limitation of ankle joint range of motion than when the knee is flexed.117 Specifically, Johnson and Christensen demonstrated that, with loading of the Achilles tendon, there was a dampening of the pull of the peroneus longus tendon which failed to lock the midtarsal joint by evert- ing the medial cuneiform into the central column of the

foot, resulting in dorsiflexion of the first metatarsal and first cuneiform and plantarflexion of the navicula and talus.118 This is the one of the distal compensations associ- ated with equinus, others being pronation of the rearfoot, early heel-off, and abducted gait pattern.118 Proximal com- pensation that may occur includes: lumbar lordosis, hip flexion, and genu recurvatum.39

What pathologies are associated with equinus?

The extremely high frequency of equinus presence, in conjunction with biomechanically related foot and ankle pathologies, is another concept that must be fully appreci- ated. Table 1 shows lower extremity pathologies that have been linked with equinus in the literature with the reference.

Does stretching the Gastrocsoleal muscle increase ankle joint range-of-motion?

Konrad and Tilp examined the changes of the muscle tendon unit with static stretching of the Gastroc-soleal complex.80 The study consisted of 49 police cadets, with 25 assigned to a stretching group and 24 to the control group. The stretching group stretched five-times per week for six weeks using the standing wall push stretch. The stretch was held for 30 seconds per leg, alternating legs for four stretches of each leg, totaling 120 seconds of stretching per leg. This time period of 4 x 30 second static stretches has been shown by Ryan, et al. to decrease muscle-tendon stiffness.81

Range of motion was measured with an electric goni- o meter, with the patient standing with the foot at a right angle to the leg. The patient then stepped back with one leg to maximally dorsiflex the ankle while keeping the heel on the ground and the back knee fully extended, the front knee flexed, and the foot in neutral position to avoid pronation. The range of motion was the difference between the maximal dorsiflexion position and neutral position. Ankle joint range-of-motion pre-stretch averaged

Continued on page 137
was significantly more than Gajdosik, et al. found. They showed an increase of 5.1° after eight weeks of a stretching program consisting of 10 repetitions per leg held for 15 seconds each done daily three times per week. This difference most likely represents the difference between the frequencies of the stretching programs (three times per week vs. five times per week).

How long should stretching be done each day and for how many weeks?

Radford, et al. in their meta-analysis review examined this question based on five trials that met their inclusion criteria of randomized or quasi-randomized static stretching compared to a control group but not using the contralateral leg as the control, excluding cross-over studies and studies with spastic equinus.95 Stretching techniques varied from weight-bearing to non-weight bearing with the knee flexed or extended. Studies using devices to assist stretching were included, but studies with modalities designed to assist the muscle’s physiological ability to stretch were excluded. Any outcome to evaluate ankle joint dorsiflexion, weight-bearing (standing, walking, or running) or non-weight-bearing was included. The findings revealed stretching for ≤15 minutes increased ankle joint dorsiflexion 2.07°, ≥15 minutes but ≤30 minutes resulted in 30.9° ± 5.3° for the stretching group and 32.1° ± 7.7° for the control group. After six-weeks of stretching, the results were 36.3° ± 6.1° and 31.8° ± 7.0°, respectively. The increase in dorsiflexion of 5.4° seen in the stretching group was statistically significant. This result was similar to those of other studies. Mahieu, et al. showed less of an increase in dorsiflexion at 2.6°, while Guissard, Duchateau, and Nakamura, et al. both had results with more dorsiflexion after static stretching at 7.6° and 6.7°.82,83,84

Macklin, et al. examined 13 runners who had ≤6° of ankle joint dorsiflexion with the knee extended and a foot posture index of ≤+8 or ≥-8 (which prevented extreme planus or cavus deformities).85 Using a ramp, the participants stretched both legs for four minutes in the morning and evening. Ankle joint dorsiflexion was measured at four and eight weeks. Ankle joint dorsiflexion increased by 11° on the left and 10° on the right. This was a 200% increase in ankle joint dorsiflexion.

Another interesting finding from this study was that the F-scan results of peak plantar pressures (PPPs) beneath the 1st and 2nd metatarsal phalangeal joints (MPJs) on both feet, and the 5th MPJ on the right foot were increased with increased ankle joint dorsiflexion. This is contrary to what historically has been described in the literature as reducing PPPs with increased ankle joint dorsiflexion.10,57,58 Stance time and heel contact time were both reduced. The authors from this study felt that this surprising finding was mostly likely the result of re-establishing normal foot mechanics. The authors’ opinion about this quandary was, “The increased pressures which are now applied for a shorter period of time over a greater and more even distribution within the foot may be less harmful to the foot.” They concluded, “These results also strongly indicate that this specific non-invasive stretching regime could be considered before resorting to more invasive options.”

The elderly population’s ability to stretch to increase ankle joint dorsiflexion is an interesting question that has been answered by Johnson, et al. in their article “Effect of a Static Calf Muscle-Tendon Unit Stretching Program on Ankle Dorsiflexion Range of Motion of Older Women.”40 This study consisted of 13 subjects with an average age of 83.8 ± 4.7 years. The pre-stretching ankle joint dorsiflexion averaged -11.1° ± 4.6°, which corresponds to reported skeletal muscle changes that occur with age, including a decreased muscle cross-sectional area due to fat and connective tissue changes within the muscle.91,92,93 Gajdosik, et al. had a similar finding for changes in the gastroc-soleal complex when they examined muscle stiffness in young, middle-aged, and elderly women showing significantly decreased ankle joint dorsiflexion with age.56

Johnson, et al. utilized the runner’s (wall) stretching method for four stretches per limb, held for 60 seconds each, done daily for five of seven days for a total of six weeks. Ankle joint dorsiflexion was then measured three days after the last stretch and averaged 1.2° ± 3.0°, a statistically significant increase of 12.3° ± 4.4°. This
is clinically important.” What is to be made from this conclusion? Certainly, it shows that 30 minutes per day of stretching is adequate to increase ankle joint dorsiflexion, but the multiple variables of measurement and stretching modalities put the total amount of actual increase in ankle joint dorsiflexion in question. Inherently, one would postulate that as the time of stretching per day increased, the resultant amount of ankle joint dorsiflexion would also increase accordingly.

Others studies have utilized stretching programs consisting of 30 seconds per day per leg,105,108,109 one minute per day per leg,106,109 one minute 20 seconds per day per leg,97 two minutes per day per leg,106,107,109 two and a half minutes per day per leg,96,104 three minutes per day per leg,101,104 four minutes per day per leg,91,105 five minutes per day per leg,96,105 eight minutes per day per leg.10

Continued on page 139
Equinus (from page 138)

minutes per day per leg,53,98 30 minutes per day per leg,102 and during sleeping hours via a night splint.50,76,100,109,111 Young, et al. in their paper, “Interventions for increasing ankle joint dorsiflexion: a systematic review and meta-analysis,” reviewed 23 studies and the most common duration for stretching was six weeks.110 This was also the time period used in several of the aforementioned studies. I have found 8 to 12 weeks to be the most common time period to achieve deformity correction of +5° ankle joint dorsiflexion with the knee extended. Based on the literature, a minimum of six weeks should be anticipated when initiating therapy.

Is foot position important when stretching?

Johnson, et al. in “The Effect of Subtalar Joint Position on Dorsiflexion of the Ankle/Rearfoot Versus Midfoot/Forefoot During Gastrocnemius Stretching” evaluated the effect of subtalar (STJ) position on ankle/rear-foot and the mid-foot passive range of motion with stretching of the gastrocnemius muscle.88 The study consisted of 27 participants with a mean age of 31.3 years with a chronic lower extremity pathology and ankle joint dorsiflexion of ≤ 10°. The participants stretched five 30-second stretches for a total of 20 stretches in pronation and supination on each lower extremity in a randomly determined sequence. Pre-stretching ankle joint dorsiflexion with the knee extended values were 4.6° ± 2.9° left and 4.6°± 4.1° right.

This is an excellent opportunity to discuss unilateral vs. bilateral stretching. As this study and others such as Macklin, et al. have shown that there is a consistency between right and left sides for ankle joint dorsiflexion regardless of unilaterality or bilaterality of pathology.85

Based on the literature, a minimum of six weeks should be anticipated when initiating therapy.

Additionally, Manel, et al. demonstrated no statistical difference of the pennation angles between right and left leg muscles, and Abellaneda, et al. showed no difference in medial gastrocnemius fascicle length between the right (53.3° ± 1.3 mm) and left (51.8° ± 1.4 mm) legs.112,113 This data suggests that stretching of the gastrocsoleal complex should be done bilaterally and preferably at the same time. There were several significant findings from Johnson et al.’s study, but the most important was statistically significant increase in mid-foot/forefoot dorsiflexion when stretching in pronation compared to supination.

The other pertinent findings were statistically significant, with more extension of the knee and increased normalized vertical ground reaction force when stretching in supination compared to pronation. This knee extension finding is a very important concept. When the subtalar joint supinates, the tibia externally rotates; conversely when the subtalar joint pronates, the tibia internally rotates.115 This external rotation of the tibia that is required for full knee extension has been termed the “screw home mechanism.”120,121 Johnson, et al. concluded, “Clinicians may want to consider STJ position during gastrocnemius stretching to either facilitate or limit recruitment of dorsiflexion motion at the midfoot/forefoot.”

What are the limitations with current modalities of conservative therapy for equinus?

The three difficulties with manual stretching are technique, consistency, and compliance.

Runner’s stretch potential errors:

Continued on page 140
Equinus (from page 139)

1) Back heel must stay down on the ground (Figure 1)
2) Back knee must stay fully extended (Figure 2)
3) Front knee is bent (Figure 3)
4) Back should remain straight
5) Body weight should be forward
6) Foot must be supinated—this is critical and the most difficult factor to perform correctly (Figures 4, 5)

Consistency is involved with the need to stretch for at least six weeks according to much of the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above. Stretching every day or five days per week for six weeks can lead to a lack of consistency from the patient. The time to stretch daily certainly has been wide-ranging in the literature described above.

Continued on page 141
Equinus (from page 140)

ature, but Radford, et al. showed that most dorsiflexion resulted in 15 to 30 minutes of stretching daily per leg. Getting a patient to stretch for a total of 30 to 60 minutes per day (stretching each leg 15 to 30 minutes) can lead to poor compliance.

Night splints have been used for decades as an alternative to manual stretching but, like manual stretching, night splints have limitations that can result in sub-optimal results.

1) Night splints do not go above the knee, and therefore do not lock the knee into full extension even when the patient is using it with the leg extended. It is uncomfortable to fully extend the knee while dorsiflexing the ankle. Additionally, the knee cannot be fully extended unless the tibia is externally rotated, which requires the subtalar joint to be supinated via the Windlass mechanism. (Figure 6)

2) Night splints have traditionally been used during sleep. Most adults sleep on their sides with their knees bent; this results in the gastrocnemius not being stretched. Night splints also have a reputation for disturbing patient sleep, resulting in poor compliance. (Figure 7)

3) Dorsal night splints allow the forefoot to plantarflex relative to the rear-foot reducing the corrective force to dorsiflex the ankle.

Innovative conservative management of equinus deformity

The EQ/IQ equinus brace is one of the most significant improvements in the conservative management of equinus deformity in decades. This brace has several features to provide the optimal setting for stretching of the gastroc-soleal complex.

1) The brace extends above the knee, allowing the knee to be locked and maintained in full extension to fully stretch the gastroc-soleal complex. (Figure 8)

2) The Windlass mechanism is engaged by placing a wedge beneath the hallux to dorsiflex it, resulting in stretching of the plantar fascia, locking of the midtarsal joint, supination of the subtalar joint, external rotation of the tibia.

The EQ/IQ equinus brace is one of the most significant improvements in the conservative management of equinus deformity in decades.
Conclusion
Equinus is associated with the majority of biomechanically-related lower extremity pathologies. The comprehensive treatment of any pathology with an underlying equinus component mandates stretching of the gastroc-soleal complex. If the pathology can be treated conservatively, then the equinus deformity must also be simultaneously treated conservatively. The historical conservative treatments for equinus have limitations. The EQ/IQ brace provides a solution for the conservative treatment of equinus by addressing these limitations.

References
Equinus (from page 142)

20 Downey, MS; Banks, AS: Gastrocnemius recession in the
treatment of nonspastic ankle equinus: a retrospective study. J. Am.
19 Harris, RI; Beath, T: Hypermobile flatfoot with short tendo
17 Hoke, M: An operation for the correction of extremely relaxed
16 Sgarlato, TE; Morgan, J; Shane, HS; Frenkenberg, A: Tendo
15 Kaufman, K.R., Brodine, S.K., Shaffer, R.A., Johnson, C.W.,
13 Elstrand, J., Gillquist, J., 1982. The frequency of muscle tight-
12 Neely, F.G., 1998. Biomechanical risk factors for exercise-relat-
Relation between running injury and static lower limb alignment in
9 Tabrizi, P; McIntyre, WM; Quesnel, MB; Howard, AW: Limited
dorsiflexion predisposes to injuries of the ankle in children. J. Bone
8 Armstrong, DG; Stacpoole-Shea, S; Nguyen, H; Harkness, LR:
Lengthening of the Achilles tendon in diabetic patients who are at
high risk for ulceration of the foot. J. Bone Joint Surg. 81-A:535-538,
1999.
7 Barry, DC; Sabacinski, KA; Habershaw, GM; Giurini, JM;
Chrzans, JS: Tendo Achilles procedures for chronic ulcerations with
transmetatarsal amputations. J. Am. Podiatr. Med. Assoc. 83:96-100,
1993.
6 Lin, SS; Lee, TH; Wapner, KL: Plantar forefoot ulceration
with equinus deformity of the ankle in diabetic patients: The effect of
tendo-Achilles lengthening and total contact casting. Orthopedics
5 Mueller, MJ; Sinacore, DR; Hastings, MK; Strube, MJ; Johnson,
JE: Effect of Achilles tendon lengthening on neuropathic plantar ul-
2003.
4 Nishimoto, GS; Attinger, CE; Cooper, PS: Lengthening the
Achilles tendon for the treatment of diabetic plantar forefoot ulcer-
3 Early, JS; Hansen, ST: Surgical reconstruction of the diabetic
foot: a salvage approach for midfoot collapse. Foot Ankle Int. 17:325-
330,1996.
2 Schon, LC; Easley, ME; Weinfield, SB: Charcot neuroarthropa-
Subotnick SI. Equinus deformity as it affects the foot. J Am
Downey MS. Ankle Equinus. In McGlamry’s Comprehensive
Textbook of Foot and Ankle Surgery, pp 715–760, edited by AS
Banks, MS Downey, DE Martin, SJ Miller, Lippincott Williams &

Continued on page 144
Equinus (from page 143)

86 Konrad, Andreas, and Markus Tlpir. “Increased range of motion after static stretching is not due to changes in muscle and tendon structures.” Clinical Biomechanics 29.6 (2014): 636-642.
95 Mecagni C, Smith JP, Roberts KE, Continued on page 146

PRACTICAL BIOMECHANICS
Equinus (from page 144)

Dr. DeHeer is in private practice in Central Indiana. He is the team podiatrist for the Indiana Pacers and the Indiana Fever. He is the inventor of the EQ/IQ brace, President and Founder of Wound Care Haiti, and a medical missionary. Dr. DeHeer is a past president of the Indiana Podiatric Medical Association and a trustee of the APMA. He is recipient of the 2011 APMA Humanitarian of the Year Award.