Surgical Treatment

In part 1, we discussed the conservative treatment of Charcot foot. In this part, we discuss the surgical management of this debilitating condition. We begin with a review of the literature.

Pinzur reviewed 201 Charcot feet and found that three had primary amputation and five had amputation after failed salvage surgery. Three quarters of the patients had midfoot deformity rather than ankle. 59.2% of the midfoot cases reached desired endpoint without surgery. Of the 40.8% that required surgery, more required osteotomy than simple arthrodesis.76 Myerson, et al., reviewed 116 Charcot midfoot cases and found 7 required amputation. 19 of the patients required arthrodesis while 7 required ostectomy.77 Saltzman, et al., found that out of 127 Charcot feet treated with only non-operative care, 49% had recurrent ulceration, 23% required long term bracing, and there was a 2.7% annual amputation rate.78 Many authors have referenced Saltzman’s paper from the standpoint of the fallacy of offering only non-surgical care to these patients. In those patients whom conservative

Continued on page 188
failed to achieve a stable, non-ulcerated, pain-free foot that can be placed in footwear—surgery should be offered.

When deciding between surgery and some other stop-gap measure (such as permanent use of a CROW), the surgeon must consider many criteria before proceeding (Table 10). There is no conclusive evidence as to the proper timing or method of surgical intervention. However, most clinicians will agree that the indications for surgical intervention include but are not limited to pain, a non-plantargrade foot, recurring ulcer secondary to exostosis, misalignment and joint instability. Generally, we prefer to minimize post-operative infections, dehiscence and hardware purchase problems respectively.

Patients with soft tissue or bone infection are taken immediately to first-stage surgery for radical debridement of all devitalized tissue, deep biopsies, placement of antibiotic-loaded cement spacers followed by culture-guided long-term intravenous antibiotics prior to performing corrective surgery and placing hardware. Patients are not taken to the operative theatre for osseous reconstruction until temperatures have equilibrated to the contralateral side, edema is resolved, and ulcerations and infections have healed. While some clinicians have discussed the possibility of arthrodesis in the active phase of Charcot, most agree that the risks of performing reconstructions in the active phase of neuroarthropathy are too great and optimal fixation can be difficult to achieve.

Researchers have shown that a 25% infection rate exists when patients undergo Charcot reconstructions while ulcerations are open. Typically, patients will be brought to the operative theatre with the total contact cast intact. All patients receive pre-operative doses of prophylactic antibiotics in accordance with good medical practice. Most procedures are performed under general anesthesia due to the length of procedures and the mid-lower lower level of pin placement and Achilles tendon corrections. Occasionally, in patients that cannot tolerate general anesthesia, a spinal block will be performed with tetracaine.

The surgical goals are coverage of deep exposed structures, correction of ankle equinus, restoration of calcaneal inclination and tibia to floor angles, correction of the rearfoot to leg relationship, correction and stabilization of degenerative joint. We also require that all patients contemplating surgery undergo smoking cessation due to the overwhelming literature noting bone healing complications related to nicotine.

Another requirement is conditioning, weight loss and gait training with the required assistive devices prior to surgery so that compliance with non-weight-bearing can occur. The patient comes to his/her pre-surgical interview non-weight-bearing on the selected assistive device to “prove” ability to be non-weight-bearing to the surgeon. Patients who take this seriously generally drop the glycosylated hemoglobin levels to a range that we consider the “ticket” to surgery. When patients are required to develop “ownership” of the condition prior to the surgery, we’ve noted good compliance levels with post-operative restrictions as compared to the general consensus in the Charcot surgeon community. Currently, all Charcot reconstruction patients are prescribed a low molecular weight heparin pre-operatively and complete training on self-administration.

Lastly, all patients are seen by our internists for clearance and optimization prior to scheduling so that the patient already has a relationship with them prior to being admitted after surgery. We take pride that our patients enter the surgical arena physically and mentally prepared for the surgical procedures and well-educated on the complications that can occur.

Specific Reconstructive Surgical Procedures

Equinus Correction

Due to the fact that ankle equinus is a determining factor to the severity of Charcot deformity many of our non-surgical patients and all of our surgical...
constructions will have correction of the Achilles tendon contracture. It is the first and most powerful step in correction of these patients. We’ve noted that our patients undergoing casting have fewer difficulties in the casts when this contracture is corrected and they cool down into the in-active phase more quickly. Generally, these patients undergo a percutaneous triple hemi-section either in our clinic at the time of casting or in our ambulatory procedure unit in the hospital.

In our reconstruction patients, the Achilles must be corrected to allow bony repositioning of the osteotomies and to prevent attenuation of our correction over time due to the strong pull of the triceps. In these patients, we more often perform an open procedure with complete Z-tenotomy and suturing at the corrected physiologic length.

Occasionally, we encounter frail, non-surgical patients that simply require tenotomy in order to be shoeable and braceable and we accomplish this through a 3 mm. incision over the central aspect of the tendon with a #64 mini-blade followed by cast application with the foot at 90 degrees to the leg. We generally do not perform gastrocnemius recession (open nor endoscopic) due to invariable finding that the contracture is of the conjoined tendons rather than of the gastrocnemius only. This is bolstered by Grant’s and others’ unique work on tendon glycosylation.

Planing

Patients with a simple prominent bony exostosis, usually under the medial column, can forego a full reconstructive osteotomy with fusion. (Figure 12) In those patients, in addition to the mandatory Achilles release, a simple exostectomy is performed to relieve pressure under the prominent bone. These patients do very well generally, and have a low incidence of ulcer recurrence both in our program and in the literature. Patients with lateral column ulcers can have local exostectomies, but it has been our experience that they have a higher recurrence rate and have better outcomes when coupled with transpositional flaps.

Rosenblum, et al., had similar results when they performed a retrospective review of lateral column ulcers and performed flaps either as a primary procedure or as a revisional procedure in about half of a 32-patient cohort.

In patients with a varus hindfoot or ankle with lateral foot ulcers, local exostectomy will be rarely met with success and a triple arthrodesis is indicated. In patients with complete collapse into a convex arch with massive forefoot abduction or with severe deformity, so much bone would have to be removed that destabilization of the foot can occur. Planing should not be contemplated in these patients. The procedure of choice would be a midfoot osteotomy.

One important caveat when treating...
those patients presenting with the “old burnt-out” Charcot foot is to never assume that the initial perfusion that was undoubtedly present during the acute process still exists. In the period of time from onset of Charcot to the presentation in the office—arterial stenosis can certainly occur. If the foot is pulseless, if only monophasic flow is audible with a hand-held Doppler, or if lack of retrograde flow of both main arteries is noted—a full noninvasive arterial examination and vascular consultation should be obtained. Treat these patients just as you would the typical patient with a diabetic foot ulcer even when planning the most simple exostectomy or Achilles tendon lengthening.

Midfoot Osteotomy

According to Lowery et al., the most common location requiring surgical intervention for Charcot deformity is the midfoot, accounting for 59% of the time.114 Most midfoot deformities are characterized by a collapse of the medial and lateral longitudinal arches with a rocker bottom deformity, abduction of the forefoot, and loss of calcaneal pitch due to triceps pull. Many orthopedic and podiatric surgeons perform a bipedal transpedal osteotomy with an achilles tendon lengthening. (Figure 13) The primary differences surround fixation techniques and post-operative restrictions. Osteotomies are described as fixed with standard internal fixation with small screws, plantar plating, static tensioned external framing, bent-wire tensioned external framing, and combination of internal and external fixation.97-102 Some surgeons initially apply an external frame over the osteotomy and at frame removal apply internal screws to any unstable areas.113

Our procedure is basically a reverse Cole osteotomy with biplanar wedges to correct both the sagittal plane collapse as well as the forefoot abduction. We utilize K-wire “guide-rails” to mark the bone cuts and perform the cuts with a large power saw. An initial stabilization of the medial and lateral columns is performed with large bore 7.3 mm cannulated screws that act as beams. We take care to make sure that the shank-to-thread junction is not close to the joint fusion site.

Our goal is complete correction of the 1st metatarsal to talus angle in both the coronal and sagittal plane and the beams virtually guarantee this. Once this is accomplished, we apply an external fixator foot ring which is secured to the calcaneal. A forefoot wire is then placed in a bent configuration that is tensioned, causing a dramatic pull back against the calcaneal wire. The bent wire technique coupled with the screw “beams” causes a dramatic synergy of compression across the osteotomy site that has been demonstrated clinically as well in sawbone and cadaver models.103

We do question patients during our pre-surgical interview about any history of claustrophobia or “cast anxiety” as indicators of potential for intolerance of the external fixation (so called “Cage Rage”). If we feel that there is a high likelihood of intolerance we may select another form of fixation or consider post-op anti-anxiety medications.

We’ve abandoned small screws due to the large moment arms present in the midfoot, the roughly million plus load cycles that can occur in a normal patient’s year, and the frequency of hardware failure noted in the literature. Our feeling is that with the triceps surgically weakened and with triplane external bracing, a large diameter screw spanning a fibrous nonunion in a Charcot pa-
tient will still likely maintain the alignment of the foot. We generally secure our footing to either multiple tibial wires and rings or to a delta configuration with the foot at 90 degrees to the leg.

When we are dealing with an acute, isolated dislocation such as the medial cuneiform, we occasionally forego the external fixation construct and use a plate buttress over a medial column beam.

In the end, our goal in the midtarsus is not just stabilization, but a definitive re-building of the medial and lateral arches with correction of the coronal and sagittal plane deformities. It is important for podiatrists to understand this concept even if Charcot reconstructions are not part of their practice.

When referring a patient for such a reconstruction, any podiatrist should be able to evaluate the post-operative films on their patient. The astute clinician will look past all of the fancy hardware that may be present on plain film and hone in on the radiographic angles present. What should be expected is correction of the first metatarsal to talus angle in both planes both immediately post-surgically and after full-weight-bearing begins post-frame removal. Far too often, temporary framing results in attenuation of the original correction and recurrence of deformity. Full osseous fusion on radiograph is less important than deformity correction and functionality.

Tibiocalcaneal Arthrodesis

Undoubtedly the most challenging neuroarthropathy to correct is the Charcot ankle. In many cases, extreme valgus or varus angulation occur as the tibial mortise drives towards the ground and the foot is pushed out of the way. In addition, the talus will often be pulverized and will virtually dissolve away. While some authors will attempt to salvage portions of the talus, it has been the practice of our program to generally resect all of the non-viable bone and cartilage fragments of talus and perform a distal fibulotomy which allows us to easily reposition the foot on the leg due to the adequate slack that results.

We burr into healthy bleeding bone on both the tibia and calcaneous and perform wedge resections as necessary to place the foot in a plantigrade sagittal plane position and in slight valgus in the frontal plane. At this point, we generally augment the fusion with multiple drillings and placement of recombinant human bone morphogenic protein in a bovine collagen sponge to increase the chances of bony fusion.

We occasionally utilize implantable direct current bone stimulators. Any small deficits are back-filled with ceramic putty, although our aim is healthy raw bone to bone rather than large amounts of fillers, allografts, or autografts. The foot is positioned and temporarily pinned with a large diameter Steinman pin. After fluoroscopy guarantees good positioning, we then apply fixation. We’ve typically used a retrograde intramedullary nail in the past. Although we haven’t experienced some of the complications such as loosening, infection, and hardware breakage that have been reported in the literature, we do have questions regarding the true compression obtained.

We also prefer to have adjustable fixation that can be re-compressed post-surgically. Due to this, we have been phasing into two

Continued on page 192
Our Experience

A retrospective analysis of our primary authors’ patient population reveals that we’ve treated a total of 140 patients with neuroarthropathy since 2005. 17% of these patients suffered from bilateral disease. The female to male ratio was 54 to 86. The underlying neuropathy causing the Charcot joints in our population was caused by alcohol consumption in 4 patients. Cord compression, syphilis, hemachromatosis and gouty neuropathy each contributed 1 patient. The remaining 103 patients had varying types of diabetes mellitus. 18 underwent a simple percutaneous Achilles tendon lengthening, while 43 underwent an operative procedure of some type (arthrodesis, bone resection, etc.). Therefore, 57% of our patient population were managed without surgical intervention of any sort. The majority of our patients were referred by other podiatrists, vascular surgeons, plastic surgeons, pedorthists, and primary care physicians.

Case Studies

Case 1
This diabetic neuropath female in her sixties presented with an warm, swollen, tender Right foot and was diagnosed with active phase neuroarthropathy based on her history, clinical examination, infrared temperatures, radiographs, and serologic bone markers. (Figures 14a-c) A significant equinus deformity was noted but the foot was plantigrade and not ulcerated. She began a course of oral bisphosphonate therapy as well as total contact casting and also had a percutaneous triple hemisection of her Achilles tendon. (Figure 14d) The patient progressed from the active to in-active phase without collapse and was transitioned to an articulated, molded foot ankle orthosis. (Figure 14e-f)

Case 2
This middle-aged male with history of peripheral neuropathy secondary to hemachromatosis presented with a Right in-active Charcot midfoot deformity and a history of chronic and recurrent foot ulcers despite shoe and insert modifications. (Figure 15a) The patient underwent local exostectomy and when healed was shod in custom inserts in depth shoes without recurrence. (Figures 15a-f)

Case 3
This male diabetic neuropath in his seventies presents with chronic and recurrent Left plantar lateral midfoot ulcer under a collapsed, in-active Charcot deformity (Figure 17a). An equinus deformity was present. The patient had suffered a contralateral below-knee amputation. Although we healed the wound through off-loading, the area was chronically scarred and unstable with an underlying exostosis. The patient underwent a local exostectomy with excision of the scarred area. A transposition flap was inset to cover the deficit and a split thickness skin graft was harvested from the ipsilateral calf and used for donor site coverage. (Figure 17b-d) The patient progressed uneventfully to healing and was finally transitioned to footwear with custom insoles and a double upright calf brace (Figure 17e).

Case 4
This middle-aged diabetic female presented with an insensitive, warm, swollen, erythematous Right foot. She had a history of developing osteomyelitis of her 2nd toe on the same foot and had underwent an elective toe amputation which healed uneventfully (Figures 18a-b). Within one month, however, she developed inflammatory signs and sought multiple opinions until finally referred to the author. She was diagnosed with active Charcot neuroarthropathy based on the history of recent trauma (surgery), neuropathy, asymmetric infrared cutaneous temperature readings, flail first ray, and positive radiographs for sudden arthrosis and dislocation of the first metatarso-cuneiform joint (Figures 18c-e).

The patient underwent immediate off-loading with knee scooter, compression wraps, ice therapy, and elevation. When edema had resolved, she proceeded with surgical fusion of the first metatarso-cuneiform joint. (Figure 19a-f).
metatarso-cuneiform joint with plate and beaming with correction of the dorsiflexed first ray (Figures 18f-g). She continued non-weight-bearing with scooter; finally transitioning through total contact casts to depth shoes and insoles.

Complications

“Surgerizing” these patients is not to be undertaken lightly even if the patient presents with one or more surgical indications. Rogers, et al., discussed the complication rate of Charcot reconstructions with external fixators. He found that 56% of the patients suffered wound dehiscence, 25% suffered pin failure, and 31% had pin tract infections. The risk factors associated most strongly with post-operative complications in his paper were younger age, long tourniquet time, and pre-operative hyperglycemia. Thorndarson, et al., identified the additional risk factors for non-union, including psychiatric disorders, illicit drug use, alcohol, nicotine abuse, and open fractures along with diabetes as risk factors when discussing ankle fusions. Complications and alternatives such as elective amputation, palliative wound and Charcot care (such as the CROW boot) are discussed clearly with our patients when obtaining surgical consent. (Table 11)

Conclusion

Charcot neuroarthropathy is a complicated disease process to diagnosis, classify, and treat successfully. Clinicians must review the literature and avoid dogma. A comprehensive diagnostic and treatment program combining the best ideas and research across multiple specialties, including our own unique additions, has been presented. Through diligent care and referral patterns, the clinician can tilt the balance in favor of a good outcome when encountering this devastating complication. PM

References

76 Pinzur M: Surgical versus accommodative treatment for Charcot arthropathy of the midfoot. Foot and Ankle International. 25(8) August; 545-549, 2004
78 Saltzman CL, Hagy ML, Zimmerman B, et al., How effective is intensive nonoperative initial

Continued on page 194

85 Authors’ own data.

86 Thomas Roukis, DPM personal communication.

1) Criteria necessary to consider an elective Charcot foot reconstruction include:
- A) A healed soft tissue envelope
- B) Lack of peripheral neuropathy
- C) Patient age under 45 years old
- D) Active, inflammatory stage of neuroarthropathy

2) The preferred option in treatment of Charcot deformities with concomitant bone infection includes:
- A) Primary amputation of the affected foot
- B) Two-stage procedure with resolution of infection followed by reconstruction
- C) One-stage osteomyelitis resection and reconstruction
- D) Conservative treatment only

3) Surgical procedures that are indicated in a severe rocker-bottom deformity are:
- A) Tibiocalcaneal arthrodesis
- B) Transpedal wedge osteotomy
- C) Achilles tendon lengthening
- D) B & C

4) The appropriate surgical procedure for a Charcot foot with a fixed varus hindfoot and history of lateral column ulcerations is:
- A) Exostectomy
- B) Syme’s amputation
- C) Triple arthrodesis
- D) Tibiocalcaneal arthrodesis

5) Indications for surgery for Charcot foot:
- A) Uncontrolled pain
- B) Unresponsive ulceration
- C) Unshoeable deformity
- D) Any of the above

6) Optimization of reconstructive outcomes in neuroarthropathy includes:
- A) Pre-operative weight loss and conditioning
- B) Peri-operative smoking cessation
- C) Ability to tolerate off-loading and fixation apparatus
- D) All of the above

7) Virtually all Charcot reconstructions will include the following procedures:
- A) Intramedullary nail fixation
- B) Triceps surae lengthening
- C) Invasive bone growth stimulators
- D) A & C

8) Charcot neuroarthropathy of the ankle with severe valgus or varus deformity is best treated surgically with:
- A) Tibiocalcaneal or Tibiotalocalcaneal fusion
- B) Midfoot osteotomy
- C) Triple arthrodesis
- D) B & C

9) Stage II Charcot neuroarthropathy of the midfoot with a severe rocker-bottom deformity and equinus is best treated surgically with:
- A) Tibiocalcaneal fusion
- B) Achilles tendon lengthening and percutaneous pinning of the midfoot joints
- C) Achilles tendon lengthening and Midfoot osteotomy
- D) Achilles tendon lengthening and tibiocalcaneal fusion

10) Patients undergoing neuroarthropathy reconstructions while suffering from an open ulceration:
- A) Have a higher post-operative infection rate
- B) Have a lower post-operative infection rate
- C) Have more pain post-operatively
- D) Have less pain post-operatively

11) Complications associated with external fixators in Charcot reconstructions include:
- A) Pin tract infections
- B) Pin failure/fracture
- C) “Cage Rage”
- D) All of the above

12) Options that should be discussed with each patient contemplating a Charcot reconstruction are:
- A) Elective amputation
- B) Palliative care
- C) Reconstruction
- D) All of the above

13) A patient suffering from recurrent ulcerations under a subluxed medial cuneiform without a rockerbottom deformity. The ulcers recur despite shoegear and bracing modifications. The patient should be offered:
- A) Midfoot osteotomy
- B) Local exostectomy
- C) Tibiocalcaneal fusion
- D) An isolated achilles tendon lengthening with bone removal

14) Recent research has shown that patients with neuroarthropathy treated without surgery have an ulcer recurrence rate of roughly:
- A) 0%
- B) 50%
- C) 100%
- D) No one has performed this research

15) The following can be utilized to enhance bone healing in surgical fusions of Charcot patients:
- A) Bone growth stimulators
- B) Bone morphogenic protein
- C) Cartilage and subchondral plate debridement
- D) All of the above

Continued on page 196
Welcome to the innovative Continuing Education Program brought to you by Podiatry Management Magazine. Our journal has been approved as a sponsor of Continuing Medical Education by the Council on Podiatric Medical Education.

Now it’s even easier and more convenient to enroll in PM’s CE program!

You can now enroll at any time during the year and submit eligible exams at any time during your enrollment period.

PM enrollees are entitled to submit ten exams published during their consecutive, twelve-month enrollment period. Your enrollment period begins with the month payment is received. For example, if your payment is received on September 1, 2006, your enrollment is valid through August 31, 2007.

If you’re not enrolled, you may also submit any exam(s) published in PM magazine within the past twelve months. CME articles and examination questions from past issues of Podiatry Management can be found on the Internet at http://www.podiatrym.com/cme. Each lesson is approved for 1.5 hours continuing education contact hours. Please read the testing, grading and payment instructions to decide which method of participation is best for you.

Please call (631) 563-1604 if you have any questions. A personal operator will be happy to assist you.

Each of the 10 lessons will count as 1.5 credits; thus a maximum of 15 CME credits may be earned during any 12-month period. You may select any 10 in a 24-month period.

The Podiatry Management Magazine CME program is approved by the Council on Podiatric Education in all states where credits in instructional media are accepted. This article is approved for 1.5 Continuing Education Contact Hours (or 0.15 CEU’s) for each examination successfully completed.

See answer sheet on page 197.
Note: If you are mailing your answer sheet, you must complete all info. on the front and back of this page and mail with your credit card information to: Podiatry Management, P.O. Box 490, East Islip, NY 11730.

TESTING, GRADING AND PAYMENT INSTRUCTIONS

(1) Each participant achieving a passing grade of 70% or higher on any examination will receive an official computer form stating the number of CE credits earned. This form should be safeguarded and may be used as documentation of credits earned.

(2) Participants receiving a failing grade on any exam will be notified and permitted to take one re-examination at no extra cost.

(3) All answers should be recorded on the answer form below. For each question, decide which choice is the best answer, and circle the letter representing your choice.

(4) Complete all other information on the front and back of this page.

(5) Choose one out of the 3 options for test grading: mail-in, fax, or phone. To select the type of service that best suits your needs, please read the following section, “Test Grading Options”.

TEST GRADING OPTIONS

Mail-In Grading
To receive your CPME certificate, complete all information and mail with your credit card information to:

Podiatry Management
P.O. Box 490, East Islip, NY 11730

PLEASE DO NOT SEND WITH SIGNATURE REQUIRED, AS THESE WILL NOT BE ACCEPTED.

There is no charge for the mail-in service if you have already enrolled in the annual exam CPME program, and we receive this exam during your current enrollment period. If you are not enrolled, please send $22.00 per exam, or $169 to cover all 10 exams (thus saving $51 over the cost of 10 individual exam fees).

Facsimile Grading
To receive your CPME certificate, complete all information and fax 24 hours a day to 1-631-563-1907. Your CPME certificate will be dated and mailed within 48 hours. This service is available for $2.50 per exam if you are currently enrolled in the annual 10-exam CPME program (and this exam falls within your enrollment period), and can be charged to your Visa, MasterCard, or American Express.

If you are not enrolled in the annual 10-exam CPME program, the fee is $22 per exam.

Phone-In Grading
You may also complete your exam by using the toll-free service. Call 1-800-232-4422 from 10 a.m. to 5 p.m. EST, Monday through Friday. Your CPME certificate will be dated the same day you call and mailed within 48 hours. There is a $2.50 charge for this service if you are currently enrolled in the annual 10-exam CPME program (and this exam falls within your enrollment period), and this fee can be charged to your Visa, Mastercard, American Express, or Discover. If you are not currently enrolled, the fee is $22 per exam.

If you are not enrolled in the annual 10-exam CPME program, the fee is $22 per exam.

In the event you require additional CPME information, please contact PMS, Inc., at 1-631-563-1604.

ENROLLMENT FORM & ANSWER SHEET

Please print clearly...Certificate will be issued from information below.

Name ___ Soc. Sec. #______________________________

Please Print: FIRST MI LAST

Address__

City__ State_______________________ Zip________________________________

Charge to: _____Visa _____ MasterCard _____ American Express

Card #__Exp. Date____________________

Note: Credit card is the only method of payment. Checks are no longer accepted.

Signature__________________________________ Soc. Sec.#______________________ Daytime Phone_____________________________

State License(s)___________________________ Is this a new address? Yes________ No________

Check one: _____ I am currently enrolled. (If faxing or phoning in your answer form please note that $2.50 will be charged to your credit card.)

_____ I am not enrolled. Enclosed is my credit card information. Please charge my credit card $22.00 for each exam submitted. (plus $2.50 for each exam if submitting by fax or phone).

_____ I am not enrolled and I wish to enroll for 10 courses at $169.00 (thus saving me $51 over the cost of 10 individual exam fees). I understand there will be an additional fee of $2.50 for any exam I wish to submit via fax or phone.

Over, please
EXAM #3/13
Developing a Comprehensive Diagnostic and Treatment Plan for Charcot Neuroarthropathy—Pt. 2 (Bernstein, Lam, and Motko)

Circle:
1. A B C D
2. A B C D
3. A B C D
4. A B C D
5. A B C D
6. A B C D
7. A B C D
8. A B C D
9. A B C D
10. A B C D
11. A B C D
12. A B C D
13. A B C D
14. A B C D
15. A B C D
16. A B C D
17. A B C D
18. A B C D
19. A B C D
20. A B C D

Medical Education Lesson Evaluation

1) This CME lesson was helpful to my practice _____
2) The educational objectives were accomplished _____
3) I will apply the knowledge I learned from this lesson _____
4) I will make changes in my practice behavior based on this lesson _____
5) This lesson presented quality information with adequate current references _____

How long did it take you to complete this lesson?

_____ hour _____ minutes

What topics would you like to see in future CME lessons?
Please list:
__
__
__
__
__
__
__
__