With the advent of new understanding of foot and ankle biomechanics and the introduction of cutting-edge technology along with the availability of space-age materials, pediatric foot orthoses no longer have to rely on the pain principle, no longer have to be used as a crutch, and no longer have to "support" the medial longitudinal arch to be effective.

Considerations

The foot of the young child differs from that of the adult foot in that it is

In 1896, a prominent American orthopedist, Royal Whitman, MD designed and introduced the first foot brace, the Whitman Plate. This relatively heavy steel device worked on the "pain principle" of correction: i.e., as the excessively pronated child’s foot rolled medially into the steel flanged arch segment of the device, it became so intolerable that the child would reflexively supinate the foot in order to avoid further discomfort.

Another early device that worked along these lines was known as ‘Spitzy’s ball’. This "active correction" device consisted of a moveable, wooden, marble-size ball sewn into the longitudinal arch region of a straw-soled sandal. And finally, in the strange but true category, a patient told me that when he was a child, his father, who was a physician, hammered a nail in the longitudinal arch region of his shoes, forcing him to walk on the outer border of his feet. Thank God since that time, the design and principles guiding the prescription of pediatric foot orthoses have radically changed.

With the advent of new understanding of foot and ankle biomechanics and the introduction of cutting-edge technology along with the availability of space-age materials, pediatric foot orthoses no longer have to rely on the pain principle, no longer have to be used as a crutch, and no longer have to "support" the medial longitudinal arch to be effective.

Considerations

The foot of the young child differs from that of the adult foot in that it is
Pediatric Orthoses (from page 147)

more flexible and moldable than its relatively rigid adult counterpart. The prescription of foot orthoses for the pediatric patient must reflect these fundamental differences in terms of material selection, rigidity, degree, and type of correction. Due to the increased and varied activity level present in children, orthotic design must be geared toward dynamic function. It is for this reason that computer assisted and observational gait analyses play an important role in their successful prescription.4,5

Effecting Structural Change

Although there are many clinical benefits derived from pediatric orthopedic deformities by serial plaster immobilization and is the basis for the practice of orthodontics in dentistry.6 Through Wolff’s Law of Bone, functional adaptation of the osseous segments will take place positively, permanently altering structure.7 This is especially true and of major significance in the management of lower extremity musculoskeletal deficiencies in the developing child. According to Huurman “As in other congenital abnormalities, growth and development can be effectively used as long as the orthotic is worn faithfully and for a prolonged period of time.”12 As might be expected, the longer the orthotic is worn, the greater the improvement.7-12

By limiting pathologic pronation at the subtalar and midtarsal joints, pediatric orthoses encourage proper sequencing of the lower extremity musculature, allowing them to work effectively and efficiently at appropriate points in the gait cycle. Through Davis’ law of soft tissue, pediatric orthoses encourage muscles and tendons that have become pathologically elongated to now contract and those that have been adaptively contracted to lengthen.13

Additionally, due to the learned response of orthotic function, tissue memory and the “mimicking effect”, pediatric foot orthoses will improve foot and limb function for a period of time even after they are removed from the shoe. Of course, if the device were not worn for the prescribed length of time, some reversion to its original form would take place.

Pediatric Orthoses

Two tenets in the management of pediatric orthopedic deformities are that the earlier treatment is instituted and the more flexible the deformity the more favorable the outcome. Failure to intervene loses the brief ‘golden window’ of opportunity that once passed can never be retrieved. In a 10-year study by Rose, of 154 children with flexible pes planus treated with a modified AFO (lateral bar with medial “Y” strap), only six children were not able to achieve a stable position following treatment and all of these six subjects were over six years of age at the start of study. All other subjects were under one year of age when treatment began.14 Rose concluded, “Nevertheless because the ultimate condition can be so disabling and the treatment so readily tolerated, some degree of over-correction is acceptable and desirable.”

Continued on page 149

Polypropylene is an ideal shell material for an active child four years of age.

FIGURE 1:

Characteristic Benefits of Pediatric Orthoses

Realignment of osseous and soft tissue structures
Restoration of normal lower extremity function
Redirection of pathologic epiphyseal stresses
Improved COF and COG pathways
Rectus forefoot
Locked midtarsal joint
First ray stability
Reduced talocalcaneal angle
Reduced talar declination
Increased calcaneal inclination
Reduced midstance phase of gait
Increased propulsive phase of gait
Reduced Q angle
Reduced lumbosacral angle
Reduced lumbar and cervical lordosis
Reduced dorsal kyphosis
Improved posture
Improved postural complex alignment
Knee and hip extension
Increased height

Figure 2: The shell of this device precisely conformed to the medial longitudinal arch upon dispensing yet there is noted an absence of wear in that region. This is due to and is an indicator of proper rear and forefoot alignment with concomitant improvement in dynamic function, allowing the arch to “support” itself, resulting in a normal “footprint in the sand” wear pattern.
Pediatric Orthoses (from page 148)

“A Dynamic Guidance System”

A properly designed pediatric biomechanical orthotic device is not an arch support designed to buttress the longitudinal arch and randomly supinate the foot but rather a retainer to re-align the osseous and soft tissue segments and to influence and direct motion in a precise manner. A foot orthotic is not a brace but a dynamic guidance system providing stable fulcrums for the intrinsic stabilizers and extrinsic prime movers to function effectively and efficiently. This is achieved through the use of appropriate rear and forefoot posting so that the arch supports itself. In fact, there should be little or no wear evident on the orthotic in the longitudinal arch region (Figure 2).

Much like orthodontics in dentistry, the prescription of custom foot orthoses in children utilizes growth and skeletal maturation to produce improvement in structure and function.1-14 With continued and periodic modifications, long-term pain and disability may not be inevitable as an adult.10-12 These modifications serve to better align, control, and stabilize the fat, flat, and floppy child’s foot. Additionally, the greater width allows distribution of anti-pronation forces over a broader surface area. In the presence of significant equinus compensation, a more flexurally forgiving shell may be indicated to allow for some modicum of oblique axis midtarsal joint compensation, thereby improving tolerance while at the same time fostering compliance.

The increased activity level and accompanying on-forefoot position in most children over three years of age are better suited with a full foot device. Forefoot posting extended to the sulcus propels the foot. This contrived raising of the longitudinal arch shifts the line of gravity laterally, thereby unlocking the oblique axis midtarsal joint, which results in forefoot instability and repetitive lateral displacement of the foot on the device. Unlike arch supports, a pediatric foot orthosis acts as a dynamic guide not as a static “crutch” for the foot and leg to lean on.

The properly prescribed pediatric orthotic re-aligns the osseous and soft tissue structures the number of degrees that they are out of alignment in the forefoot and in the rearfoot (Figures 5, 6). Antagonistic muscle groups in the lower extremity can now act in an appropriate and balanced manner. It is in this position that the arch can support itself and is not in need of external support.

Indications for Use

Although the majority of pediatric foot orthoses are prescribed to control the excessively pronated foot, there are nonetheless other important indications for their use (Figure 7). These include stabilization post-serial plaster immobilization as employed in the management of talipes equinovarus, metatarsus adductus, and calcaneovalgus. The effects of equinus deficiencies respond well to orthotic control (Figure 8). Prescription foot orthoses reduce apophysial traction forces in Sever’s disease. Orthoses limit painful motion in the juvenile rheumatoid arthritic foot. They restrict abnormal motion and limit peroneal spasm in tarsal coalitions.

Pediatric orthoses may be prescribed to provide foot and ankle stabilization in the management of ankle instability. Additionally, these devices may be used to effect a beneficial change in postural alignment by negating the effects of a medially displaced line of gravity.

In the knee, foot orthoses reduce the Q angle and limit abnormal transverse and frontal plane forces that precipitate, perpetuate, or aggravate conditions such as patellofemoral pain syndrome, Sinding-Larsen-Johans-

Figure 3: Graphite composite shell with markedly deepened heel seat, reduced undercut and medial and lateral flanges.
Flexible Pediatric Flatfoot

The prescription of custom foot orthoses in the flexible pediatric flatfoot has been the topic of debate for over a century. Most authors agree that the symptomatic flexible flatfoot in the pediatric patient should be treated; however, the disagreement begins in discussing whether or not to treat the asymptomatic pediatric flatfoot. The primary underlying objection of those advocating not to treat is that these feet will positively undergo some degree of developmental correction early in life, so why intervene. “Don’t worry, they’ll grow out of it” is a phrase that’s heard all too often in practice from adult patients recalling professional advice given to their parents.

The problem with this philosophy is that in those children where there is a persistence of deformity growth and development structurally embeds these imperfections into the musculoskeletal system, perpetuating the need for unending compensatory adjustments in function in response to the unaddressed abnormalities retained in structure.

The other issue is how to know which children will grow out of it and which ones won’t. The real question here is not whether or not to treat asymptomatic flexible flatfeet in children but whether or not to treat pathologically pronated feet in children. There are a number of studies which state it should not be treated since normal development proceeds towards the formation of a longitudinal arch. However, there are no long-term double-blind studies in the conservative management of the asymptomatic pediatric flatfoot in which subjects have received no treatment or various forms of non-operative care, thereby confirming or denying these statements. Absence of evidence should be never be construed as evidence.

Additionally, the infant foot is immature, malleable, malaligned and subject to the deforming effects of gravity at a time when marked ontogenetic changes are taking place. When compensatory pathologic forces are added to this clinical picture, it fosters retention of in-utero positions, discourages or delays ideal development, and promotes progressive dysfunction, deformity, and ultimately disability. Symptomatology may not occur until the second or third decades of life.

As a further point, the American Academy of Pediatrics-Section on Orthopaedics and the Pediatric Orthopaedic Society of North America in a recent position paper advised its members not to prescribe or recommend custom foot orthoses for children with minimally symptomatic or asymptomatic flat feet. These groups further recommend that if an arch is present when “standing on tiptoe” then the condition can be managed with observation.
Pediatric Orthoses (from page 150)

vation or over-the-counter orthotics.

Their recommendations are based on the findings of two papers—one by Wegner and the other by Staheli—and the somewhat biased views of one paper’s lead author.27,36 The primary study that these two groups refer to in dismissing the effectiveness of shoes, inserts, and UCBL-type devices in the management of the pediatric flexible flatfoot was performed by Wegner, et al.36 This study radiographically assessed the results of these modalities over a three-year period in 129 flatfooted children under six years of age and concluded that wearing these devices or modifications does not influence the course of flexible flatfoot.

However, upon closer examination, it can be readily seen that all radiographic parameters had a positive correlation between the initial angle and change in radiographic angle with intervention. Patients with the largest initial angle had the most change independent of the method of treatment. Furthermore, the UCBL group started with a greater deformity but ended with a smaller deformity. Finally, even though equinus was identified in this group of children, it was never utilized in the study either by prescribing an appropriate stretching program or elevating the heel region of the device or prescribing a more flexurally forgiving shell. Eliminating the equinus subjects might show an even greater positive change due to the intolerability of UCBL type devices in the presence of equinus forces.5,37,38

On the other hand, there are also a number of studies which recommend intervention since no one is able to accurately predict which children will “grow out of it” and which children won’t.32,33,39-48 Experts agree that adult acquired flatfoot almost always begins with a pre-existing pediatric flatfoot.30,40 Orthopedist Justin Greisberg states, “Perhaps the most important acquisition or over-the-counter orthotics.

Children under six years of age possess a profound developmental potential with rapidly changing foot and leg alignment. The feet of children in this age range are usually floppy, flat, and fat with the youngest in the group being the most noticeably affected. It is no wonder that this foot has been described as a loose bag of bones floating in a mass of soft tissue. These factors coupled with rapidly changing foot and leg align-

By ages 5-8, the majority of structural form in the foot has been completed.

Posting Pediatric Orthoses

In the orthotic management of the excessively pronated pediatric foot, the amount of rearfoot and forefoot posting that should be employed is the number of degrees required to re-align the osseous and soft tissue structures in subtalar joint neutral position and also does not allow any visible pronation to be observed during stance or ambulation. This posting is individually determined after thorough lower extremity biomechanical evaluation both static and dynamic, with or without computer assisted gait analysis, and to some extent is age-dependent.

Figure 6: Successful realignment of the osseous and soft tissue structures.
In these cases, combining extrinsic with intrinsic posting allows the orthotic to fit more easily into footwear and is usually more readily tolerated.

As an example, let’s look at the forefoot posting considerations for an active eight year old that measures 13° forefoot varus upon clinical examination. We are able to reduce the deformity to 9° by applying plantarward pressure to the medial segment of the dorsum of the foot while the plaster is hardening.

This technique is also helpful in reducing large amounts of forefoot varus in older children. Ultimately, and at any age, the same dictum applies, i.e. the amount of forefoot varus posting that should be employed is the minimum amount necessary to neutralize all visible pronation and provide optimum subtalar joint neutral position alignment during stance and ambulation. Periodic monitoring of changes in forefoot varus is necessary since the varus deformity may reduce, and thus posting should be modified accordingly and in a timely manner. Reduction in deformity may be due to encouragement of normal development, orthotic-induced resolution of forefoot supinatus, as well as improvement in overall pedal performance and alignment.

Foot instability related to spastic or flaccid paralysis of congenital or acquired deformity
Juvenile hallux valgus and varus
Juvenile hammertoes
Arthritides or Osteochondritis of the metatarsal heads
Calcaneal apophyseitis
Hypermobility
Metatarsus Primus Elevatus
Morton’s syndrome
Plantarflexed 1st metatarsal
Brachymetatarsia
Flaccid metatarsals
Forefoot varus or valgus
Rearfoot varus or valgus
Metatarsus adductus
Accessory navicular avulsion, fracture, stress
Metatarsal fractures or avulsion type injuries
Sesamoiditis fractures and dislocation
Protection of lateral ankle, foot, heel, talus, base & 5th met head
Protection of medial ankle, navicular, base and head of 1st met
Protection of protruding growth or neoplasm anywhere in an area covered by the shoe
Gross deformities requiring protection from shoe pressure
Gross deformities requiring immobilization
Calcaneal fractures
Dorsal exostoses
Cuboid dislocation or subluxation

FIGURE 7:
Selected Indications for Pediatric Foot Orthoses Modified After RO Schuster, DPM

Pronation in children anytime the navicular differential from neutral is greater than 3/8” or 9mm with or without pain
Foot instability related to spastic or flaccid paralysis of congenital or acquired deformity
Juvenile hallux valgus and varus
Juvenile hammertoes
Arthritides or Osteochondritis of the metatarsal heads
Calcaneal apophyseitis
Hypermobility
Metatarsus Primus Elevatus
Morton’s syndrome
Plantarflexed 1st metatarsal
Brachymetatarsia
Flaccid metatarsals
Forefoot varus or valgus
Rearfoot varus or valgus
Metatarsus adductus
Accessory navicular avulsion, fracture, stress
Metatarsal fractures or avulsion type injuries
Sesamoiditis fractures and dislocation
Protection of lateral ankle, foot, heel, talus, base & 5th met head
Protection of medial ankle, navicular, base and head of 1st met
Protection of protruding growth or neoplasm anywhere in an area covered by the shoe
Gross deformities requiring protection from shoe pressure
Gross deformities requiring immobilization
Calcaneal fractures
Dorsal exostoses
Cuboid dislocation or subluxation

Continued on page 153
tion of individual developmental trends is important in ascertaining whether or not additional neutralization of these imbalances is indicated. As previously stated, no visible pronation should be permitted and the subtalar joint should be maintained in its neutral position. Since an adult-like gait pattern is achieved by three years of age, the ability of the foot to provide a rigid lever for propulsion is of paramount importance in the management objectives for this age group.

In children between four and seven years of age, the same caution must be exercised regarding the complete neutralization of structural deficiencies. Since we are closer to the point at which the majority of developmental parameters should be achieved and the skeletal framework is basically set, additional neutralization of these deficiencies may be appropriate. In the child over eight years of age, neutralization of structural deficiencies is indicated with the caveat that periodic monitoring of alignment and function must be performed in order to ascertain whether or not existing posting may be reduced or eliminated.

In any event, no visible pronation should be observable in stance or during gait with the subtalar joint held in neutral alignment and the forefoot and rearfoot positioned to allow contact with the supporting surface. This structural repositioning will promote a normal sequencing of events during the gait cycle, thereby improving foot and leg function.

One additional note regarding the initial prescription of pediatric foot orthoses is that the degree of correction may be limited by the ability of the patient to tolerate the device due to the extent and type of pathology present. This is especially true in the presence of equinus influences. Additionally, any inability to obtain an ideal subtalar neutral impression may not reveal the full nature of pathology in the positive. In these instances, the orthotic management program may be staged. This is especially apparent in the case of peroneal spasm, in which case the practitioner may be unable to achieve neutral subtalar position during impression casting; however, as the spasm subsides, a closer to neutral impression cast may be performed, thereby enhancing control.

Another example occurs in the case of high degrees of forefoot supination secondary to equinus compensation or ligamentous laxity. In this instance, the forefoot control posts should be lowered as the soft tissue component of the deformity resolves.

Of course, any posterior group contractions should be stretched to improve tolerance and compliance.

In general, improvements are expected in all children’s feet after a period of orthotic use. Monitoring the alignment, fit, and function of each device periodically and recasting when foot structure or performance has changed, even if the child has not outgrown the original device, is appropriate and recommended.

Orthotic Modifications to Enhance Control

There are some children’s feet that are unable to be adequately controlled with standard pediatric orthoses. In these cases orthotic modifications to increase control may be necessary. One significant method of increasing control is the Blake inverted orthosis, which is discussed in Part II of this article. Another well-tolerated orthotic modification to enhance orthotic function is known as the Kirby skive. This technique involves pouring of the positive cast 5-10° inverted that enhances rearfoot control. In children less than seven years of age, plantarflexion of the medial metatarsal heads during casting improves forefoot alignment, especially in those children with a high degree of forefoot varus.

Deepening of the heel seat up to 1° and extending the rearfoot post length with a medial flareout will improve orthotic performance. As noted, reduction of rearfoot post tapering and long high medial and lateral flanges improve control and limit forefoot transverse plane motion and midtarsal joint subluxation. Flanges may be thinned and/or cushioned medially to offer greater tolerability.

Sheldon Langer, DPM, founder of Langer Laboratory, said that the most influential portion of the orthotic device is the calcaneal inclination region that is capable of securely and precisely positioning the entire foot and ankle within a range permitted and dictated by the accompanying and appropriate rear and forefoot posts.

Along these lines, a modification to enhance orthotic control and effectiveness is enhancement of the calcaneal inclination angle in the plaster positive. This can range from 1 1/8-3/8° or greater depending on the individual and is very useful in controlling the otherwise difficult-to-control pediatric flatfoot. This modification effectively controls sagittal plane motion at the oblique midtarsal joint axis by elevating the anterior process of the calcaneus. To stabilize the lateral column, a similar enhancement can be made in the

FIGURE 8: Selected Indications for Pediatric Orthoses in the Presence of Equinus Influences

<table>
<thead>
<tr>
<th>Equinus Symptoms</th>
<th>Posterior knee, calf and Achilles pain</th>
<th>Posterior calcaneal exostosis or Haglund’s deformity</th>
<th>Sever’s disease</th>
<th>Anterior ankle “jamming”</th>
<th>Medial and lateral ankle retinaculum pain</th>
<th>Stressing of secondary plantarflexors at origins and insertions</th>
<th>Calcaneal bursitis inferior or posterior</th>
<th>Plantar fascial strain</th>
<th>Patella pain inferior; Sinding-Larsen-Johannsen, Osgood-Schlatter</th>
</tr>
</thead>
</table>

Continued on page 154
Pediatric Orthoses (from page 153)

calcaneocuboid region of the device.

In those cases where the foot is unable to be repositioned and remains laterally displaced from the center of gravity (despite appropriate and aggressive orthotic modifications), the device must begin to extend up the leg for additional leverage. The supramalleolar (SMO) device extends above the malleoli, and if that is insufficient, an ankle foot orthosis (AFO) extending further up the leg may be considered.

Factors to Evaluate

Most children today wear sneaker-type athletic footwear. While some are better constructed than others, for the most part, these shoes do not contain a rigid shank, thereby allowing the midfoot to collapse. This is especially damaging in those children with equinus-induced oblique axis midtarsal joint compensation. As a result, and as a general rule, pediatric foot orthoses should be non-compressible, relatively rigid, and possess torsional flexibility.

Since children are in essence fledgling Olympians on the go from dawn to dusk, the device must possess a degree of flexural “forgiveness” while still being able to resist deformation as well as retain its non-compressible nature. Compressibility will depend on the weight of the child, type of material, module thickness, and forces directed through it. Based on the child’s age, weight, diagnosis, and activity level, a good laboratory will be able to guide you in your selection.

When four year old Zachary decides he is going to re-enact a Spider Man leap, it would be safer if he does not land on a device that may fracture and cause injury. Examples of inflexible or rigid device materials include polyethylene, polypropylene, subortholene, and graphite composites.

The prescription of non-compressible but flexible pediatric orthoses such as leather laminates, “rubber butter” (latex/cork combinations), or “zote” type materials are not ideal for most pediatric applications. This is due to several reasons, the first being that flexible orthoses in flexible footwear such as sneakers allow the entire system to bend in the midfoot region. This undesirable midfoot flexibility allows unimpeded oblique axis midtarsal joint pronation to take place.

The second reason is that materials used in the fabrication of a flexible device subject the module to rapid deformation and loss of function. This is especially true in the case of a leather laminate-type device that is fabricated by wetting and pressing the leather to conform to the plaster positive. Because of increased temperature and perspiration inside the shoe, this “moulding” process continues, thereby changing the shape of the device according to the abnormal forces directed through it. This deformation is rapid and alters its originally intended function.

References

2 Schuster OF. Foot Orthopedics First Institute of Podiatry, New York 1927.
5 Resseque B. Pediatric Orthoses In Tompson P Volpe R eds Introduction to Podopediatrics Churchill Livingstone Edinburgh 2001;318-334.
9 Tax HP Podopediatrics Baltimore Williams & Wilkins 1980.
10 Bordelon RL. Correction of hypermobile flatfoot in children by molded insert Foot Ankle 1980.
12 Huusman WW Congenital Foot Deformities in Mann RA ed Surgery of the Foot CV Mosby St Louis 1986;542-543.
13 Davis HG Conservative Surgery NY Appleton 1867.

Continued on page 155
Pediatric Orthoses (from page 154)

44 Meready C Dolan C Luskin R Evaluation of the UCBL shoe insert in flexible pes planus Clin Orthop 1972;Jan-Feb(82);45-58.
47 Greisberg Adult acquired flatfoot in eds DiGiovanni Greisberg JE Core Knowledge in Orthopedics Foot & Ankle.
51 Kirby KA. Foot and lower extremity biomechanics: a ten year intercostral of precision intercast and newsletters, USA:Precision Intracast Inc 1997.

CME EXAMINATION

SEE ANSWER SHEET ON PAGE 157.

1) The orthotic should conform to the child’s foot and after a period of use in an optimally functioning device, there should be no evidence of wear in which one of the following areas?
A) calcaneus
B) longitudinal arch
C) metatarsal heads
D) sulcus and digital region

2) An ideal shell material for an active child four years of age would be which one of the following?
A) leather
B) fiberglass
C) polypropylene
D) Plastazote

3) A valuable addition to improve orthotic control in the fat, flat, and floppy child’s foot is which one of the following?
A) deepened heel seat
B) Kirby skive
C) enhanced calcaneal inclination
D) all of the above

4) The original Whitman steel plate functioned on which one of the following principles?
A) pain principle
B) law of soft tissue
C) law of recapitulation
D) adaptivity

5) The conservative orthopedic management of congenital pediatric musculoskeletal deformities utilizing splints, orthotics, braces, or serial plaster immobilization relies on improvements in alignment and function during periods of growth. This is referred to as:
A) Wolff’s Law of Bone
B) Haeckle’s Law of Recapitulation
C) Morton’s syndrome
D) Law of Reciprocal Inhibition

6) In the presence of equinus influences in the child’s foot and in addition to an appropriate posterior group stretching program,
the following orthotic modification may be helpful:

A) increased shell flexibility to allow flexural forgiveness without deformation
B) increased rearfoot posting
C) Kirby skive
D) forefoot posting extended to the sulcus

7) Which of the following orthotic modifications would address increased forefoot activity and enhance orthotic effectiveness in the active child over two years of age?

A) forefoot posting extended to the sulcus
B) reduced rearfoot posting
C) reduced undercut
D) heel elevation

8) Which of the following age groups represents the time period when the majority of structural form in the foot has been completed?

A) 4-6 years
B) 6-8 years
C) 8-10 years
D) 10-12 years

9) Since most adult foot deformities begin in childhood, the most important treatment for an acquired flatfoot is which one of the following?

A) periodic monitoring
B) surgical intervention
C) muscle strengthening
D) prevention

10) Complete neutralization of identified structural deficiencies in children under what age is ill-advised?

A) 7 years
B) 9 years
C) 11 years
D) 13 years

SEE ANSWER SHEET ON PAGE 157.

The author(s) certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.
Enrollment/Testing Information and Answer Sheet

Note: If you are mailing your answer sheet, you must complete all info. on the front and back of this page and mail with your credit card information to: Program Management Services, P.O. Box 490, East Islip, NY 11730.

Testing, Grading and Payment Instructions

(1) Each participant achieving a passing grade of 70% or higher on any examination will receive an official computer form stating the number of CE credits earned. This form should be safeguarded and may be used as documentation of credits earned.

(2) Participants receiving a failing grade on any exam will be notified and permitted to take one re-examination at no extra cost.

(3) All answers should be recorded on the answer form below. For each question, decide which choice is the best answer, and circle the letter representing your choice.

(4) Complete all other information on the front and back of this page.

(5) Choose one out of the 3 options for test grading: mail-in, fax, or phone. To select the type of service that best suits your needs, please read the following section, "Test Grading Options".

Test Grading Options

Mail-In Grading
To receive your CME certificate, complete all information and mail with your credit card information to: Program Management Services, P.O. Box 490, East Islip, NY 11730. PLEASE DO NOT SEND WITH SIGNATURE REQUIRED, AS THESE WILL NOT BE ACCEPTED.

Facsimile Grading
To receive your CME certificate, complete all information and fax 24 hours a day to 1631-532-1964. Your CME certificate will be dated and mailed within 48 hours. This service is available for $2.95 per exam if you are currently enrolled in the annual 10-exam CME program (and this exam falls within your enrollment period), and can be charged to your Visa, Mastercard, or American Express. If you are not enrolled in the annual 10-exam CME program, the fee is $28 per exam.

Phone-In Grading
You may also complete your exam by using the toll-free service. Call 1-800-232-4422 from 10 a.m. to 5 p.m. EST, Monday through Friday. Your CME certificate will be dated the same day you call and mailed within 48 hours. There is a $2.95 charge for this service if you are currently enrolled in the annual 10-exam CME program (and this exam falls within your enrollment period), and this fee can be charged to your Visa, Mastercard, American Express, or Discover. If you are not currently enrolled, the fee is $28 per exam.

In the event you require additional CME information, please contact PMS, Inc., at 1-631-563-1604.

ENROLLMENT FORM & ANSWER SHEET

Please print clearly...Certificate will be issued from information below.

Name __________________________ Email Address __________________________
Please Print: FIRST MI LAST
Address __________________________
City______________________________ State_______________________ Zip_____________________
Charge to: _____Visa _____ MasterCard _____ American Express
Card #____________________________ Exp. Date____________________ Zip for credit card____________

Note: Credit card is the only method of payment. Checks are no longer accepted.

Signature________________________ Email Address_________________________ Daytime Phone____________________
State License(s)___________________ Is this a new address? Yes________ No________

Check one: ____ I am currently enrolled. (If faxing or phoning in your answer form please note that $2.95 will be charged to your credit card.)

____ I am not enrolled. Enclosed is my credit card information. Please charge my credit card $28.00 for each exam submitted. (plus $2.95 for each exam if submitting by fax or phone).

____ I am not enrolled and I wish to enroll for 10 courses at $229.00 (thus saving me $51 over the cost of 10 individual exam fees). I understand there will be an additional fee of $2.95 for any exam I wish to submit via fax or phone.

Over, please

www.podiatrym.com APRIL/MAY 2019 | PODIATRY MANAGEMENT
EXAM #4/19
Pediatric Orthoses: An Overview—Part I
(D’Amico)

Circle:

1. A B C D
2. A B C D
3. A B C D
4. A B C D
5. A B C D
6. A B C D
7. A B C D
8. A B C D
9. A B C D
10. A B C D

Medical Education Lesson Evaluation

1) This CME lesson was helpful to my practice ____________
2) The educational objectives were accomplished ____________
3) I will apply the knowledge I learned from this lesson ____________
4) I will make changes in my practice behavior based on this lesson ____________
5) This lesson presented quality information with adequate current references ____________
6) What overall grade would you assign this lesson?
 A B C D
7) This activity was balanced and free of commercial bias.
 Yes _____ No _____
8) What overall grade would you assign to the overall management of this activity?
 A B C D

How long did it take you to complete this lesson?
______ hour ______ minutes

What topics would you like to see in future CME lessons?
Please list:
__
__
__
__
__
__